Oznaczanie obrazów etykietami za pomocą Firebase ML na platformach Apple

Możesz użyć ikony Firebase ML, aby oznaczyć obiekty rozpoznane na obrazie. Informacje o funkcjach tego interfejsu API znajdziesz w omówieniu.

Zanim zaczniesz

    Jeśli nie masz jeszcze Firebase w swojej aplikacji, dodaj ją, wykonując czynności opisane w przewodniku dla początkujących.

    Do instalacji zależności Firebase i do zarządzania nimi możesz używać menedżera pakietów Swift.

    1. Po otwarciu projektu aplikacji wybierz w Xcode opcję File > Add Packages (Plik > Dodaj pakiety).
    2. Gdy pojawi się prośba, dodaj repozytorium pakietu SDK Firebase na platformy Apple:
    3.   https://github.com/firebase/firebase-ios-sdk.git
    4. Wybierz bibliotekę Firebase ML.
    5. Dodaj flagę -ObjC do sekcji Other Linker Flags (Inne flagi linkera) w ustawieniach kompilacji elementu docelowego.
    6. Gdy skończysz, Xcode zacznie automatycznie wyszukiwać i pobierać zależności w tle.

    Następnie przeprowadź konfigurację w aplikacji:

    1. Zaimportuj Firebase w aplikacji:

      Swift

      import FirebaseMLModelDownloader

      Objective-C

      @import FirebaseMLModelDownloader;
  1. Jeśli nie masz jeszcze włączonych interfejsów API w chmurze w swoim projekcie, zrób to teraz:

    1. Otwórz Firebase MLstronę Interfejsy API w konsoli Firebase.
    2. Jeśli nie masz jeszcze projektu z abonamentem Blaze z płatnością za wykorzystanie, kliknij Uaktualnij. (Prośba o uaktualnienie pojawi się tylko wtedy, gdy Twój projekt nie korzysta z abonamentu Blaze).

      Tylko projekty w ramach abonamentu Blaze mogą korzystać z interfejsów API opartych na chmurze.

    3. Jeśli interfejsy API oparte na chmurze nie są jeszcze włączone, kliknij Włącz interfejsy API oparte na chmurze.

Możesz teraz oznaczać obrazy.

1. Przygotowywanie obrazu wejściowego

Utwórz obiekt VisionImage za pomocą UIImage lub CMSampleBufferRef.

Aby użyć UIImage:

  1. W razie potrzeby obróć obraz, aby jego właściwość imageOrientation miała wartość .up.
  2. Utwórz obiekt VisionImage, używając prawidłowo obróconegoUIImage. Nie podawaj żadnych metadanych rotacji – musisz użyć wartości domyślnej .topLeft.

    Swift

    let image = VisionImage(image: uiImage)

    Objective-C

    FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

Aby użyć CMSampleBufferRef:

  1. Utwórz obiekt VisionImageMetadata, który określa orientację danych obrazu zawartych w buforze CMSampleBufferRef.

    Aby uzyskać orientację obrazu:

    Swift

    func imageOrientation(
        deviceOrientation: UIDeviceOrientation,
        cameraPosition: AVCaptureDevice.Position
        ) -> VisionDetectorImageOrientation {
        switch deviceOrientation {
        case .portrait:
            return cameraPosition == .front ? .leftTop : .rightTop
        case .landscapeLeft:
            return cameraPosition == .front ? .bottomLeft : .topLeft
        case .portraitUpsideDown:
            return cameraPosition == .front ? .rightBottom : .leftBottom
        case .landscapeRight:
            return cameraPosition == .front ? .topRight : .bottomRight
        case .faceDown, .faceUp, .unknown:
            return .leftTop
        }
    }

    Objective-C

    - (FIRVisionDetectorImageOrientation)
        imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                               cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationLeftTop;
          } else {
            return FIRVisionDetectorImageOrientationRightTop;
          }
        case UIDeviceOrientationLandscapeLeft:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationBottomLeft;
          } else {
            return FIRVisionDetectorImageOrientationTopLeft;
          }
        case UIDeviceOrientationPortraitUpsideDown:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationRightBottom;
          } else {
            return FIRVisionDetectorImageOrientationLeftBottom;
          }
        case UIDeviceOrientationLandscapeRight:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationTopRight;
          } else {
            return FIRVisionDetectorImageOrientationBottomRight;
          }
        default:
          return FIRVisionDetectorImageOrientationTopLeft;
      }
    }

    Następnie utwórz obiekt metadanych:

    Swift

    let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
    let metadata = VisionImageMetadata()
    metadata.orientation = imageOrientation(
        deviceOrientation: UIDevice.current.orientation,
        cameraPosition: cameraPosition
    )

    Objective-C

    FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
    AVCaptureDevicePosition cameraPosition =
        AVCaptureDevicePositionBack;  // Set to the capture device you used.
    metadata.orientation =
        [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                     cameraPosition:cameraPosition];
  2. Utwórz obiekt VisionImage za pomocą obiektu CMSampleBufferRef i metadanych rotacji:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.metadata = metadata

    Objective-C

    FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
    image.metadata = metadata;

2. Konfigurowanie i uruchamianie narzędzia do etykietowania obrazów

Aby oznaczyć obiekty na obrazie, przekaż obiekt VisionImage do metody processImage()VisionImageLabeler.

  1. Najpierw uzyskaj instancję VisionImageLabeler:

    Swift

    let labeler = Vision.vision().cloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // let options = VisionCloudImageLabelerOptions()
    // options.confidenceThreshold = 0.7
    // let labeler = Vision.vision().cloudImageLabeler(options: options)
    

    Objective-C

    FIRVisionImageLabeler *labeler = [[FIRVision vision] cloudImageLabeler];
    
    // Or, to set the minimum confidence required:
    // FIRVisionCloudImageLabelerOptions *options =
    //         [[FIRVisionCloudImageLabelerOptions alloc] init];
    // options.confidenceThreshold = 0.7;
    // FIRVisionImageLabeler *labeler =
    //         [[FIRVision vision] cloudImageLabelerWithOptions:options];
    
  2. Następnie przekaż obraz do metody processImage():

    Swift

    labeler.process(image) { labels, error in
        guard error == nil, let labels = labels else { return }
    
        // Task succeeded.
        // ...
    }
    

    Objective-C

    [labeler processImage:image
               completion:^(NSArray<FIRVisionImageLabel *> *_Nullable labels,
                            NSError *_Nullable error) {
                   if (error != nil) { return; }
    
                   // Task succeeded.
                   // ...
               }];
    

3. Uzyskiwanie informacji o oznaczonych obiektach

Jeśli etykietowanie obrazu się powiedzie, do modułu obsługi zakończenia zostanie przekazana tablica obiektów VisionImageLabel. Z każdego obiektu możesz uzyskać informacje o funkcji rozpoznanej na obrazie.

Przykład:

Swift

for label in labels {
    let labelText = label.text
    let entityId = label.entityID
    let confidence = label.confidence
}

Objective-C

for (FIRVisionImageLabel *label in labels) {
   NSString *labelText = label.text;
   NSString *entityId = label.entityID;
   NSNumber *confidence = label.confidence;
}

Dalsze kroki