Po wytrenowaniu własnego modelu za pomocą AutoML Vision Edge możesz go używać w aplikacji do oznaczania obrazów.
Modele wytrenowane za pomocą AutoML Vision Edge można integrować na 2 sposoby. Możesz zgrupować model, kopiując jego pliki do projektu Xcode, lub pobrać go dynamicznie z Firebase.
Opcje grupowania modeli | |
---|---|
W pakiecie w aplikacji |
|
Hostowany w Firebase |
|
Zanim zaczniesz
Uwzględnij biblioteki ML Kit w pliku Podfile:
Aby połączyć model z aplikacją:
pod 'GoogleMLKit/ImageLabelingCustom'
Aby dynamicznie pobierać model z Firebase, dodaj zależność
LinkFirebase
:pod 'GoogleMLKit/ImageLabelingCustom' pod 'GoogleMLKit/LinkFirebase'
Po zainstalowaniu lub zaktualizowaniu pakietów projektu otwórz projekt Xcode za pomocą
.xcworkspace
. ML Kit jest obsługiwany w Xcode w wersji 12.2 lub nowszej.Jeśli chcesz pobrać model, dodaj Firebase do projektu na Androida, jeśli nie zostało to jeszcze zrobione. Nie jest to wymagane, gdy model jest w pakiecie.
1. Wczytaj model
Konfigurowanie źródła lokalnego modelu
Aby połączyć model z aplikacją:
Wyodrębnij model i jego metadane z archiwum ZIP pobranego z konsoli Firebase do folderu:
your_model_directory |____dict.txt |____manifest.json |____model.tflite
Wszystkie 3 pliki muszą znajdować się w tym samym folderze. Zalecamy używanie plików w postaci pobranej, bez wprowadzania zmian (w tym nazw plików).
Skopiuj folder do projektu Xcode, pamiętając o zaznaczeniu opcji Utwórz odwołania do folderu. Plik modelu i metadane zostaną uwzględnione w pakiecie aplikacji i będą dostępne dla ML Kit.
Utwórz obiekt
LocalModel
, podając ścieżkę do pliku manifestu modelu:Swift
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return true } let localModel = LocalModel(manifestPath: manifestPath)
Objective-C
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKLocalModel *localModel = [[MLKLocalModel alloc] initWithManifestPath:manifestPath];
Konfigurowanie źródła modelu hostowanego w Firebase
Aby użyć modelu hostowanego zdalnie, utwórz obiekt CustomRemoteModel
, podając nazwę przypisaną do modelu podczas jego publikowania:
Swift
// Initialize the model source with the name you assigned in
// the Firebase console.
let remoteModelSource = FirebaseModelSource(name: "your_remote_model")
let remoteModel = CustomRemoteModel(remoteModelSource: remoteModelSource)
Objective-C
// Initialize the model source with the name you assigned in
// the Firebase console.
MLKFirebaseModelSource *firebaseModelSource =
[[MLKFirebaseModelSource alloc] initWithName:@"your_remote_model"];
MLKCustomRemoteModel *remoteModel =
[[MLKCustomRemoteModel alloc] initWithRemoteModelSource:firebaseModelSource];
Następnie uruchom zadanie pobierania modelu, określając warunki, na jakich chcesz zezwolić na pobieranie. Jeśli model nie jest dostępny na urządzeniu lub jest dostępna nowsza wersja modelu, zadanie pobiera go asynchronicznie z Firebase:
Swift
let downloadConditions = ModelDownloadConditions(
allowsCellularAccess: true,
allowsBackgroundDownloading: true
)
let downloadProgress = ModelManager.modelManager().download(
remoteModel,
conditions: downloadConditions
)
Objective-C
MLKModelDownloadConditions *downloadConditions =
[[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
allowsBackgroundDownloading:YES];
NSProgress *downloadProgress =
[[MLKModelManager modelManager] downloadRemoteModel:remoteModel
conditions:downloadConditions];
Wiele aplikacji inicjuje zadanie pobierania w kodzie inicjującym, ale możesz to zrobić w dowolnym momencie, zanim zaczniesz używać modelu.
Tworzenie etykiet obrazów na podstawie modelu
Po skonfigurowaniu źródeł modelu utwórz obiekt ImageLabeler
na podstawie jednego z nich.
Jeśli masz tylko model zainstalowany lokalnie, utwórz etykietownik na podstawie obiektu LocalModel
i skonfiguruj próg poziomu ufności, który chcesz wymagać (patrz Ocenianie modelu):
Swift
let options = CustomImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Cloud console
// to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options)
Objective-C
CustomImageLabelerOptions *options =
[[CustomImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = @(0.0f); // Evaluate your model in the Cloud console
// to determine an appropriate value.
MLKImageLabeler *imageLabeler =
[MLKImageLabeler imageLabelerWithOptions:options];
Jeśli model jest hostowany zdalnie, przed jego uruchomieniem musisz sprawdzić, czy został pobrany. Stan zadania pobierania modelu możesz sprawdzić, korzystając z metody isModelDownloaded(remoteModel:)
menedżera modeli.
Musisz to potwierdzić tylko przed uruchomieniem etykietowania, ale jeśli masz model hostowany zdalnie i model w pakiecie lokalnym, warto wykonać tę weryfikację podczas tworzenia instancji ImageLabeler
: utwórz etykietowanie z modelu zdalnego, jeśli został pobrany, a w przeciwnym razie z modelu lokalnego.
Swift
var options: CustomImageLabelerOptions
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
options = CustomImageLabelerOptions(remoteModel: remoteModel)
} else {
options = CustomImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console
// to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKCustomImageLabelerOptions *options;
if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) {
options = [[MLKCustomImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
options = [[MLKCustomImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = @(0.0f); // Evaluate your model in the Firebase console
// to determine an appropriate value.
MLKImageLabeler *imageLabeler =
[MLKImageLabeler imageLabelerWithOptions:options];
Jeśli masz tylko model hostowany zdalnie, wyłącz funkcje związane z modelem (np. wygaszaj lub ukryj część interfejsu użytkownika), dopóki nie potwierdzisz, że model został pobrany.
Stan pobierania modelu możesz uzyskać, dołączając obserwatorów do domyślnego Centrum powiadomień. W bloku obserwatora używaj słabego odwołania do self
, ponieważ pobieranie może zająć trochę czasu, a obiekt źródłowy może zostać zwolniony przed zakończeniem pobierania. Przykład:
Swift
NotificationCenter.default.addObserver(
forName: .mlkitMLModelDownloadDidSucceed,
object: nil,
queue: nil
) { [weak self] notification in
guard let strongSelf = self,
let userInfo = notification.userInfo,
let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
as? RemoteModel,
model.name == "your_remote_model"
else { return }
// The model was downloaded and is available on the device
}
NotificationCenter.default.addObserver(
forName: .mlkitMLModelDownloadDidFail,
object: nil,
queue: nil
) { [weak self] notification in
guard let strongSelf = self,
let userInfo = notification.userInfo,
let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
as? RemoteModel
else { return }
let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
// ...
}
Objective-C
__weak typeof(self) weakSelf = self;
[NSNotificationCenter.defaultCenter
addObserverForName:MLKModelDownloadDidSucceedNotification
object:nil
queue:nil
usingBlock:^(NSNotification *_Nonnull note) {
if (weakSelf == nil | note.userInfo == nil) {
return;
}
__strong typeof(self) strongSelf = weakSelf;
MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel];
if ([model.name isEqualToString:@"your_remote_model"]) {
// The model was downloaded and is available on the device
}
}];
[NSNotificationCenter.defaultCenter
addObserverForName:MLKModelDownloadDidFailNotification
object:nil
queue:nil
usingBlock:^(NSNotification *_Nonnull note) {
if (weakSelf == nil | note.userInfo == nil) {
return;
}
__strong typeof(self) strongSelf = weakSelf;
NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError];
}];
2. Przygotuj obraz wejściowy
Utwórz obiekt VisionImage
za pomocą obiektu UIImage
lub CMSampleBufferRef
.
Jeśli używasz UIImage
, wykonaj te czynności:
- Utwórz obiekt
VisionImage
za pomocą funkcjiUIImage
. Pamiętaj, aby podać prawidłowy adres.orientation
.Swift
let image = VisionImage(image: uiImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
Jeśli używasz CMSampleBufferRef
, wykonaj te czynności:
-
Określ orientację danych obrazu zawartych w buforze
CMSampleBufferRef
.Aby uzyskać orientację obrazu:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return position == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return position == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return position == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return position == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- Utwórz obiekt
VisionImage
, używając obiektuCMSampleBufferRef
i jego orientacji:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. Uruchom narzędzie do etykietowania obrazów
Asynchronicznie:
Swift
imageLabeler.process(image) { labels, error in
guard error == nil, let labels = labels, !labels.isEmpty else {
// Handle the error.
return
}
// Show results.
}
Objective-C
[imageLabeler
processImage:image
completion:^(NSArray<MLKImageLabel *> *_Nullable labels,
NSError *_Nullable error) {
if (label.count == 0) {
// Handle the error.
return;
}
// Show results.
}];
Synchronicznie:
Swift
var labels: [ImageLabel]
do {
labels = try imageLabeler.results(in: image)
} catch let error {
// Handle the error.
return
}
// Show results.
Objective-C
NSError *error;
NSArray<MLKImageLabel *> *labels =
[imageLabeler resultsInImage:image error:&error];
// Show results or handle the error.
4. Uzyskiwanie informacji o oznaczonych obiektach
Jeśli operacja etykietowania obrazu się powiedzie, zwróci tablicę ImageLabel
. Każdy element ImageLabel
reprezentuje coś, co zostało opisane na obrazie. Możesz uzyskać opis tekstowy każdej etykiety (jeśli jest dostępny w metadanych pliku modelu TensorFlow Lite), wskaźnik ufności i indeks.
Przykład:
Swift
for label in labels {
let labelText = label.text
let confidence = label.confidence
let index = label.index
}
Objective-C
for (MLKImageLabel *label in labels) {
NSString *labelText = label.text;
float confidence = label.confidence;
NSInteger index = label.index;
}
Wskazówki dotyczące zwiększania skuteczności w czasie rzeczywistym
Jeśli chcesz oznaczać obrazy w aplikacji w czasie rzeczywistym, postępuj zgodnie z tymi wskazówkami, aby uzyskać najlepszą liczbę klatek na sekundę:
- ograniczać wywołania do tego detektora. Jeśli podczas działania detektora pojawi się nowa klatka wideo, odrzuć ją.
- Jeśli używasz danych wyjściowych z detektora do nakładania grafiki na obraz wejściowy, najpierw uzyskaj wynik, a potem renderuj obraz i nakładaj w jednym kroku. W ten sposób renderujesz na powierzchni wyświetlacza tylko raz w przypadku każdej ramki wejściowej. Przykładem są klasy previewOverlayView i FIRDetectionOverlayView w przykładowej aplikacji z galerii.