Apple प्लैटफ़ॉर्म पर Firebase पुष्टि और फ़ंक्शन का इस्तेमाल करके, Cloud Vision की मदद से लैंडमार्क की पहचान सुरक्षित तरीके से करें

अपने ऐप्लिकेशन से Google Cloud API को कॉल करने के लिए, आपको एक इंटरमीडियरी REST API बनाना होगा. यह अनुमति को मैनेज करता है और एपीआई कुंजियों जैसी गोपनीय वैल्यू को सुरक्षित रखता है. इसके बाद, आपको अपने मोबाइल ऐप्लिकेशन में कोड लिखना होगा, ताकि इस इंटरमीडियरी सेवा की पुष्टि की जा सके और उससे संपर्क किया जा सके.

Firebase Authentication और Functions का इस्तेमाल करके, इस REST API को बनाने का एक तरीका है. इससे आपको Google Cloud API के लिए, मैनेज किया जाने वाला और सर्वर-लेस गेटवे मिलता है. यह गेटवे, पुष्टि की प्रोसेस को मैनेज करता है. साथ ही, इसे पहले से बने SDK की मदद से, अपने मोबाइल ऐप्लिकेशन से कॉल किया जा सकता है.

इस गाइड में, अपने ऐप्लिकेशन से Cloud Vision API को कॉल करने के लिए, इस तकनीक का इस्तेमाल करने का तरीका बताया गया है. इस तरीके से, पुष्टि किए गए सभी उपयोगकर्ता आपके Cloud प्रोजेक्ट के ज़रिए, Cloud Vision की बिलिंग वाली सेवाओं को ऐक्सेस कर पाएंगे. इसलिए, आगे बढ़ने से पहले यह देख लें कि पुष्टि करने का यह तरीका, आपके इस्तेमाल के उदाहरण के लिए सही है या नहीं.

शुरू करने से पहले

अपना प्रोजेक्ट कॉन्फ़िगर करना

अगर आपने अपने ऐप्लिकेशन में Firebase को पहले से नहीं जोड़ा है, तो शुरू करने के लिए गाइड में दिए गए निर्देशों का पालन करके ऐसा करें.

Firebase डिपेंडेंसी इंस्टॉल और मैनेज करने के लिए, Swift Package Manager का इस्तेमाल करें.

  1. Xcode में, अपना ऐप्लिकेशन प्रोजेक्ट खोलकर, फ़ाइल > पैकेज जोड़ें पर जाएं.
  2. जब कहा जाए, तब Firebase के Apple प्लैटफ़ॉर्म के SDK टूल का रिपॉज़िटरी जोड़ें:
  3.   https://github.com/firebase/firebase-ios-sdk.git
  4. Firebase ML लाइब्रेरी चुनें.
  5. अपने टारगेट की बिल्ड सेटिंग के अन्य लिंकर फ़्लैग सेक्शन में -ObjC फ़्लैग जोड़ें.
  6. प्रोसेस पूरी होने के बाद, Xcode बैकग्राउंड में आपकी डिपेंडेंसी को अपने-आप हल और डाउनलोड करना शुरू कर देगा.

इसके बाद, ऐप्लिकेशन में कुछ सेटअप करें:

  1. अपने ऐप्लिकेशन में, Firebase इंपोर्ट करें:

    Swift

    import FirebaseMLModelDownloader

    Objective-C

    @import FirebaseMLModelDownloader;

कॉन्फ़िगरेशन के कुछ और चरण पूरे करने के बाद, हम आगे बढ़ सकते हैं:

  1. अगर आपने अब तक अपने प्रोजेक्ट के लिए, क्लाउड पर काम करने वाले एपीआई चालू नहीं किए हैं, तो अभी ऐसा करें:

    1. Firebase कंसोल का Firebase ML एपीआई पेज खोलें.
    2. अगर आपने अब तक अपने प्रोजेक्ट को Blaze की कीमत वाले प्लान पर अपग्रेड नहीं किया है, तो ऐसा करने के लिए अपग्रेड करें पर क्लिक करें. (आपको अपग्रेड करने के लिए तब ही कहा जाएगा, जब आपका प्रोजेक्ट Blaze प्लान पर न हो.)

      सिर्फ़ Blaze-लेवल के प्रोजेक्ट, क्लाउड-आधारित एपीआई का इस्तेमाल कर सकते हैं.

    3. अगर क्लाउड-आधारित एपीआई पहले से चालू नहीं हैं, तो क्लाउड-आधारित एपीआई चालू करें पर क्लिक करें.
  2. Cloud Vision API का ऐक्सेस न देने के लिए, अपनी मौजूदा Firebase एपीआई कुंजियों को कॉन्फ़िगर करें:
    1. Cloud Console का क्रेडेंशियल पेज खोलें.
    2. सूची में मौजूद हर एपीआई पासकोड के लिए, बदलाव करने वाला व्यू खोलें. इसके बाद, पासकोड पर लगी पाबंदियों वाले सेक्शन में, Cloud Vision API के अलावा सभी उपलब्ध एपीआई को सूची में जोड़ें.

कॉल किए जा सकने वाले फ़ंक्शन को डिप्लॉय करना

इसके बाद, वह Cloud फ़ंक्शन डिप्लॉय करें जिसका इस्तेमाल आपको अपने ऐप्लिकेशन और Cloud Vision API को जोड़ने के लिए करना है. functions-samples रिपॉज़िटरी में एक उदाहरण है, जिसका इस्तेमाल किया जा सकता है.

डिफ़ॉल्ट रूप से, इस फ़ंक्शन की मदद से Cloud Vision API को ऐक्सेस करने पर, आपके ऐप्लिकेशन के सिर्फ़ वे उपयोगकर्ता ही Cloud Vision API को ऐक्सेस कर पाएंगे जिन्होंने पुष्टि कराई हो. अलग-अलग ज़रूरतों के लिए, फ़ंक्शन में बदलाव किया जा सकता है.

फ़ंक्शन को डिप्लॉय करने के लिए:

  1. functions-samples repo को क्लोन या डाउनलोड करें और Node-1st-gen/vision-annotate-image डायरेक्ट्री पर जाएं:
    git clone https://github.com/firebase/functions-samples
    cd Node-1st-gen/vision-annotate-image
    
  2. डिपेंडेंसी इंस्टॉल करें:
    cd functions
    npm install
    cd ..
  3. अगर आपके पास Firebase CLI नहीं है, तो इसे इंस्टॉल करें.
  4. vision-annotate-image डायरेक्ट्री में Firebase प्रोजेक्ट शुरू करें. जब कहा जाए, तब सूची में अपना प्रोजेक्ट चुनें.
    firebase init
  5. फ़ंक्शन को डिप्लॉय करें:
    firebase deploy --only functions:annotateImage

अपने ऐप्लिकेशन में Firebase Auth जोड़ना

ऊपर डिप्लॉय किया गया कॉल करने लायक फ़ंक्शन, आपके ऐप्लिकेशन के ऐसे उपयोगकर्ताओं के किसी भी अनुरोध को अस्वीकार कर देगा जिनकी पुष्टि नहीं हुई है. अगर आपने अब तक ऐसा नहीं किया है, तो आपको अपने ऐप्लिकेशन में Firebase Auth जोड़ना होगा.

अपने ऐप्लिकेशन में ज़रूरी डिपेंडेंसी जोड़ना

'Firebase के लिए Cloud Functions' लाइब्रेरी इंस्टॉल करने के लिए, Swift Package Manager का इस्तेमाल करें.

1. इनपुट इमेज तैयार करना

Cloud Vision को कॉल करने के लिए, इमेज को base64 कोड में बदली गई स्ट्रिंग के तौर पर फ़ॉर्मैट करना ज़रूरी है. UIImage को प्रोसेस करने के लिए:

Swift

guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
let base64encodedImage = imageData.base64EncodedString()

Objective-C

NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
NSString *base64encodedImage =
  [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];

2. लैंडमार्क की पहचान करने के लिए, कॉल किए जा सकने वाले फ़ंक्शन को लागू करना

किसी इमेज में लैंडमार्क की पहचान करने के लिए, JSON Cloud Vision अनुरोध पास करके, कॉल किए जा सकने वाले फ़ंक्शन को चालू करें.

  1. सबसे पहले, Cloud Functions का इंस्टेंस शुरू करें:

    Swift

    lazy var functions = Functions.functions()
    

    Objective-C

    @property(strong, nonatomic) FIRFunctions *functions;
    
  2. टाइप को LANDMARK_DETECTION पर सेट करके अनुरोध बनाएं:

    Swift

    let requestData = [
      "image": ["content": base64encodedImage],
      "features": ["maxResults": 5, "type": "LANDMARK_DETECTION"]
    ]
    

    Objective-C

    NSDictionary *requestData = @{
      @"image": @{@"content": base64encodedImage},
      @"features": @{@"maxResults": @5, @"type": @"LANDMARK_DETECTION"}
    };
    
  3. आखिर में, फ़ंक्शन को लागू करें:

    Swift

    do {
      let result = try await functions.httpsCallable("annotateImage").call(requestData)
      print(result)
    } catch {
      if let error = error as NSError? {
        if error.domain == FunctionsErrorDomain {
          let code = FunctionsErrorCode(rawValue: error.code)
          let message = error.localizedDescription
          let details = error.userInfo[FunctionsErrorDetailsKey]
        }
        // ...
      }
    }
    

    Objective-C

    [[_functions HTTPSCallableWithName:@"annotateImage"]
                              callWithObject:requestData
                                  completion:^(FIRHTTPSCallableResult * _Nullable result, NSError * _Nullable error) {
            if (error) {
              if ([error.domain isEqualToString:@"com.firebase.functions"]) {
                FIRFunctionsErrorCode code = error.code;
                NSString *message = error.localizedDescription;
                NSObject *details = error.userInfo[@"details"];
              }
              // ...
            }
            // Function completed succesfully
            // Get information about labeled objects
    
          }];
    

3. पहचाने गए लैंडमार्क के बारे में जानकारी पाना

अगर लैंडमार्क की पहचान करने की प्रोसेस पूरी हो जाती है, तो टास्क के नतीजे में BatchAnnotateImagesResponse का JSON रिस्पॉन्स दिखेगा. landmarkAnnotations कलेक्शन में मौजूद हर ऑब्जेक्ट, इमेज में पहचाने गए किसी लैंडमार्क को दिखाता है. हर लैंडमार्क के लिए, इनपुट इमेज में उसके बाउंडिंग कोऑर्डिनेट, लैंडमार्क का नाम, उसका अक्षांश और देशांतर, उसका नॉलेज ग्राफ़ इकाई आईडी (अगर उपलब्ध हो), और मैच के कॉन्फ़िडेंस स्कोर की जानकारी मिल सकती है. उदाहरण के लिए:

Swift

if let labelArray = (result?.data as? [String: Any])?["landmarkAnnotations"] as? [[String:Any]] {
  for labelObj in labelArray {
    let landmarkName = labelObj["description"]
    let entityId = labelObj["mid"]
    let score = labelObj["score"]
    let bounds = labelObj["boundingPoly"]
    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    guard let locations = labelObj["locations"] as? [[String: [String: Any]]] else { continue }
    for location in locations {
      let latitude = location["latLng"]?["latitude"]
      let longitude = location["latLng"]?["longitude"]
    }
  }
}

Objective-C

NSArray *labelArray = result.data[@"landmarkAnnotations"];
for (NSDictionary *labelObj in labelArray) {
  NSString *landmarkName = labelObj[@"description"];
  NSString *entityId = labelObj[@"mid"];
  NSNumber *score = labelObj[@"score"];
  NSArray *bounds = labelObj[@"boundingPoly"];
  // Multiple locations are possible, e.g., the location of the depicted
  // landmark and the location the picture was taken.
  NSArray *locations = labelObj[@"locations"];
  for (NSDictionary *location in locations) {
    NSNumber *latitude = location[@"latLng"][@"latitude"];
    NSNumber *longitude = location[@"latLng"][@"longitude"];
  }
}