এই নির্দেশিকা আপনাকে দেখায় কিভাবে আপনার নির্বাচিত প্ল্যাটফর্মের জন্য Vertex AI in Firebase ব্যবহার করে সরাসরি আপনার অ্যাপ থেকে Vertex AI Gemini API তে কল করা শুরু করবেন।
ঐচ্ছিকভাবে Gemini API এর একটি বিকল্প " Google AI " সংস্করণ নিয়ে পরীক্ষা করুন৷
Google AI Studio এবং Google AI ক্লায়েন্ট SDK ব্যবহার করে বিনামূল্যে অ্যাক্সেস পান (সীমার মধ্যে এবং যেখানে উপলব্ধ)। এই SDKগুলি শুধুমাত্র মোবাইল এবং ওয়েব অ্যাপে প্রোটোটাইপ করার জন্য ব্যবহার করা উচিত৷একটি Gemini API কীভাবে কাজ করে তার সাথে পরিচিত হওয়ার পরে, Vertex AI in Firebase তে স্থানান্তর করুন (এই ডকুমেন্টেশন), যেটিতে মোবাইল এবং ওয়েব অ্যাপের জন্য গুরুত্বপূর্ণ অনেক অতিরিক্ত বৈশিষ্ট্য রয়েছে, যেমন Firebase App Check ব্যবহার করে অপব্যবহার থেকে API রক্ষা করা এবং এর জন্য সমর্থন অনুরোধে বড় মিডিয়া ফাইল ।
ঐচ্ছিকভাবে Vertex AI Gemini API সার্ভার-সাইডে কল করুন (যেমন Python, Node.js, বা Go)
Gemini API এর Firebase Extensions সার্ভার-সাইড Vertex AI SDKs , Firebase Genkit বা Firebase এক্সটেনশনগুলি ব্যবহার করুন৷
পূর্বশর্ত
ধাপ 1 : একটি Firebase প্রকল্প সেট আপ করুন এবং আপনার অ্যাপটিকে Firebase-এর সাথে সংযুক্ত করুন
আপনার যদি ইতিমধ্যেই একটি Firebase প্রকল্প এবং Firebase এর সাথে সংযুক্ত একটি অ্যাপ থাকে
Firebase কনসোলে, Build with Gemini পৃষ্ঠাতে যান।
একটি ওয়ার্কফ্লো চালু করতে Vertex AI in Firebase ক্লিক করুন যা আপনাকে নিম্নলিখিত কাজগুলি সম্পূর্ণ করতে সাহায্য করে:
ব্লেজ প্রাইসিং প্ল্যানে পে-অ্যাজ ইউ-গো ব্যবহার করতে আপনার প্রোজেক্ট আপগ্রেড করুন।
আপনার প্রকল্পে প্রয়োজনীয় API সক্রিয় করুন ( Firebase API এ Vertex AI API এবং Vertex AI in Firebase )।
আপনার অ্যাপে SDK যোগ করতে এই গাইডের পরবর্তী ধাপে যান।
যদি আপনার কাছে ইতিমধ্যে একটি Firebase প্রকল্প এবং Firebase এর সাথে সংযুক্ত একটি অ্যাপ না থাকে
Firebase কনসোলে সাইন ইন করুন।
প্রকল্প তৈরি করুন ক্লিক করুন, এবং তারপরে নিম্নলিখিত বিকল্পগুলির মধ্যে একটি ব্যবহার করুন:
বিকল্প 1 : একটি সম্পূর্ণ নতুন ফায়ারবেস প্রকল্প তৈরি করুন (এবং এর অন্তর্নিহিত Google Cloud প্রকল্প স্বয়ংক্রিয়ভাবে) "প্রকল্প তৈরি করুন" কর্মপ্রবাহের প্রথম ধাপে একটি নতুন প্রকল্পের নাম প্রবেশ করান৷
বিকল্প 2 : "প্রকল্প তৈরি করুন" কর্মপ্রবাহের প্রথম ধাপে ড্রপ-ডাউন মেনু থেকে আপনার Google Cloud প্রকল্পের নাম নির্বাচন করে একটি বিদ্যমান Google Cloud প্রকল্পে "Firebase যোগ করুন"।
মনে রাখবেন যে যখন অনুরোধ করা হয়, আপনাকে Vertex AI in Firebase ব্যবহার করার জন্য Google Analytics সেট-আপ করতে হবে না ।
Firebase কনসোলে, Build with Gemini পৃষ্ঠাতে যান।
একটি ওয়ার্কফ্লো চালু করতে Vertex AI in Firebase ক্লিক করুন যা আপনাকে নিম্নলিখিত কাজগুলি সম্পূর্ণ করতে সাহায্য করে:
ব্লেজ প্রাইসিং প্ল্যানে পে-অ্যাজ ইউ-গো ব্যবহার করতে আপনার প্রোজেক্ট আপগ্রেড করুন।
আপনার প্রকল্পে প্রয়োজনীয় API সক্রিয় করুন ( Firebase API এ Vertex AI API এবং Vertex AI in Firebase )।
ধাপ 2 : SDK যোগ করুন
আপনার Firebase প্রকল্প সেট আপ এবং আপনার অ্যাপ Firebase-এর সাথে সংযুক্ত (আগের ধাপ দেখুন), আপনি এখন আপনার অ্যাপে Vertex AI in Firebase যোগ করতে পারেন।
ধাপ 3 : Vertex AI পরিষেবা এবং জেনারেটিভ মডেল শুরু করুন
আপনি যেকোনো API কল করার আগে, আপনাকে Vertex AI পরিষেবা এবং জেনারেটিভ মডেল শুরু করতে হবে।
আপনি যখন শুরু করার নির্দেশিকাটি শেষ করেছেন, তখন কীভাবে একটি মিথুন মডেল এবং (ঐচ্ছিকভাবে) আপনার ব্যবহারের ক্ষেত্রে এবং অ্যাপের জন্য উপযুক্ত একটি অবস্থান চয়ন করবেন তা শিখুন।
ধাপ 4 : Vertex AI Gemini API কল করুন
এখন যেহেতু আপনি আপনার অ্যাপটিকে Firebase-এর সাথে সংযুক্ত করেছেন, SDK যোগ করেছেন এবং Vertex AI পরিষেবা এবং জেনারেটিভ মডেল শুরু করেছেন, আপনি Vertex AI Gemini API কল করতে প্রস্তুত৷
আপনি generateContent()
ব্যবহার করতে পারেন একটি পাঠ্য-শুধু প্রম্পট অনুরোধ থেকে পাঠ্য তৈরি করতে:
আপনি আর কি করতে পারেন?
মিথুন মডেল সম্পর্কে আরও জানুন
বিভিন্ন ব্যবহারের ক্ষেত্রে উপলব্ধ মডেল এবং তাদের কোটা এবং মূল্য সম্পর্কে জানুন।Gemini API এর অন্যান্য ক্ষমতা ব্যবহার করে দেখুন
- কিভাবে প্রতিক্রিয়া স্ট্রিম করতে হয় তা সহ শুধুমাত্র পাঠ্য-প্রম্পট থেকে পাঠ্য তৈরি করার বিষয়ে আরও জানুন।
- মাল্টিমোডাল প্রম্পট থেকে পাঠ্য তৈরি করুন (পাঠ্য, চিত্র, পিডিএফ, ভিডিও এবং অডিও সহ)।
- মাল্টি-টার্ন কথোপকথন তৈরি করুন (চ্যাট) ।
- টেক্সট এবং মাল্টিমোডাল প্রম্পট উভয় থেকে কাঠামোগত আউটপুট (যেমন JSON) তৈরি করুন।
- বাহ্যিক সিস্টেম এবং তথ্যের সাথে জেনারেটিভ মডেল সংযোগ করতে ফাংশন কলিং ব্যবহার করুন।
বিষয়বস্তু তৈরি নিয়ন্ত্রণ কিভাবে শিখুন
- সর্বোত্তম অনুশীলন, কৌশল এবং উদাহরণ প্রম্পট সহ প্রম্পট ডিজাইন বুঝুন ।
- তাপমাত্রা এবং সর্বোচ্চ আউটপুট টোকেন মত মডেল প্যারামিটার কনফিগার করুন ।
- ক্ষতিকারক বলে বিবেচিত প্রতিক্রিয়া পাওয়ার সম্ভাবনা সামঞ্জস্য করতে নিরাপত্তা সেটিংস ব্যবহার করুন ।
Vertex AI in Firebase এর সাথে আপনার অভিজ্ঞতা সম্পর্কে মতামত দিন