ভেক্টর ফাংশন
| নাম | বিবরণ |
COSINE_DISTANCE | দুটি ভেক্টরের মধ্যে কোসাইন দূরত্ব প্রদান করে |
DOT_PRODUCT | দুটি ভেক্টরের মধ্যে ডট গুণফল প্রদান করে। |
EUCLIDEAN_DISTANCE | দুটি ভেক্টরের মধ্যে ইউক্লিডীয় দূরত্ব প্রদান করে |
MANHATTAN_DISTANCE | দুটি ভেক্টরের মধ্যে ম্যানহাটনের দূরত্ব ফেরত পাঠায়। |
VECTOR_LENGTH | একটি ভেক্টরে উপাদানের সংখ্যা প্রদান করে |
COSINE_DISTANCE সম্পর্কে
বাক্য গঠন:
cosine_distance(x: VECTOR, y: VECTOR) -> FLOAT64
বর্ণনা:
x এবং y এর মধ্যে কোসাইন দূরত্ব প্রদান করে।
Web
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await execute(db.pipeline() .collection("books") .select( field("embedding").cosineDistance(sampleVector).as("cosineDistance")));
সুইফট
let sampleVector = [0.0, 1, 2, 3, 4, 5] let result = try await db.pipeline() .collection("books") .select([ Field("embedding").cosineDistance(sampleVector).as("cosineDistance") ]) .execute()
Kotlin
val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0) val result = db.pipeline() .collection("books") .select( field("embedding").cosineDistance(sampleVector).alias("cosineDistance") ) .execute()
Java
double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").cosineDistance(sampleVector).alias("cosineDistance") ) .execute();
পাইথন
from google.cloud.firestore_v1.pipeline_expressions import Field from google.cloud.firestore_v1.vector import Vector sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) result = ( client.pipeline() .collection("books") .select( Field.of("embedding").cosine_distance(sample_vector).as_("cosineDistance") ) .execute() )
ডট_প্রোডাক্ট
বাক্য গঠন:
dot_product(x: VECTOR, y: VECTOR) -> FLOAT64
বর্ণনা:
x এবং y এর ডট গুণফল প্রদান করে।
Web
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await execute(db.pipeline() .collection("books") .select( field("embedding").dotProduct(sampleVector).as("dotProduct") ) );
সুইফট
let sampleVector = [0.0, 1, 2, 3, 4, 5] let result = try await db.pipeline() .collection("books") .select([ Field("embedding").dotProduct(sampleVector).as("dotProduct") ]) .execute()
Kotlin
val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0) val result = db.pipeline() .collection("books") .select( field("embedding").dotProduct(sampleVector).alias("dotProduct") ) .execute()
Java
double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").dotProduct(sampleVector).alias("dotProduct") ) .execute();
পাইথন
from google.cloud.firestore_v1.pipeline_expressions import Field from google.cloud.firestore_v1.vector import Vector sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) result = ( client.pipeline() .collection("books") .select(Field.of("embedding").dot_product(sample_vector).as_("dotProduct")) .execute() )
EUCLIDEAN_DISTANCE সম্পর্কে
বাক্য গঠন:
euclidean_distance(x: VECTOR, y: VECTOR) -> FLOAT64
বর্ণনা:
x এবং y এর মধ্যে ইউক্লিডীয় দূরত্ব গণনা করে।
Web
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await execute(db.pipeline() .collection("books") .select( field("embedding").euclideanDistance(sampleVector).as("euclideanDistance") ) );
সুইফট
let sampleVector = [0.0, 1, 2, 3, 4, 5] let result = try await db.pipeline() .collection("books") .select([ Field("embedding").euclideanDistance(sampleVector).as("euclideanDistance") ]) .execute()
Kotlin
val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0) val result = db.pipeline() .collection("books") .select( field("embedding").euclideanDistance(sampleVector).alias("euclideanDistance") ) .execute()
Java
double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").euclideanDistance(sampleVector).alias("euclideanDistance") ) .execute();
পাইথন
from google.cloud.firestore_v1.pipeline_expressions import Field from google.cloud.firestore_v1.vector import Vector sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) result = ( client.pipeline() .collection("books") .select( Field.of("embedding") .euclidean_distance(sample_vector) .as_("euclideanDistance") ) .execute() )
ম্যানহাটান_ডিস্ট্যান্স
বাক্য গঠন:
manhattan_distance(x: VECTOR, y: VECTOR) -> FLOAT64
বর্ণনা:
x এবং y এর মধ্যে ম্যানহাটনের দূরত্ব গণনা করে।
ভেক্টর_দৈর্ঘ্য
বাক্য গঠন:
vector_length(vector: VECTOR) -> INT64
বর্ণনা:
একটি VECTOR এ উপাদানের সংখ্যা প্রদান করে।
Web
const result = await execute(db.pipeline() .collection("books") .select( field("embedding").vectorLength().as("vectorLength") ) );
সুইফট
let result = try await db.pipeline() .collection("books") .select([ Field("embedding").vectorLength().as("vectorLength") ]) .execute()
Kotlin
val result = db.pipeline() .collection("books") .select( field("embedding").vectorLength().alias("vectorLength") ) .execute()
Java
Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").vectorLength().alias("vectorLength") ) .execute();
পাইথন
from google.cloud.firestore_v1.pipeline_expressions import Field result = ( client.pipeline() .collection("books") .select(Field.of("embedding").vector_length().as_("vectorLength")) .execute() )