توابع برداری
| نام | توضیحات |
COSINE_DISTANCE | فاصله کسینوسی بین دو بردار را برمیگرداند |
DOT_PRODUCT | حاصلضرب نقطهای بین دو بردار را برمیگرداند |
EUCLIDEAN_DISTANCE | فاصله اقلیدسی بین دو بردار را برمیگرداند |
MANHATTAN_DISTANCE | فاصله منهتن بین دو بردار را برمیگرداند |
VECTOR_LENGTH | تعداد عناصر یک بردار را برمیگرداند |
کسینوس_فاصله
نحو:
cosine_distance(x: VECTOR, y: VECTOR) -> FLOAT64
شرح:
فاصله کسینوسی بین x و y را برمیگرداند.
Web
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await execute(db.pipeline() .collection("books") .select( field("embedding").cosineDistance(sampleVector).as("cosineDistance")));
سویفت
let sampleVector = [0.0, 1, 2, 3, 4, 5] let result = try await db.pipeline() .collection("books") .select([ Field("embedding").cosineDistance(sampleVector).as("cosineDistance") ]) .execute()
Kotlin
val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0) val result = db.pipeline() .collection("books") .select( field("embedding").cosineDistance(sampleVector).alias("cosineDistance") ) .execute()
Java
double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").cosineDistance(sampleVector).alias("cosineDistance") ) .execute();
پایتون
from google.cloud.firestore_v1.pipeline_expressions import Field from google.cloud.firestore_v1.vector import Vector sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) result = ( client.pipeline() .collection("books") .select( Field.of("embedding").cosine_distance(sample_vector).as_("cosineDistance") ) .execute() )
محصول_نقطهای
نحو:
dot_product(x: VECTOR, y: VECTOR) -> FLOAT64
شرح:
حاصلضرب نقطهای x و y را برمیگرداند.
Web
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await execute(db.pipeline() .collection("books") .select( field("embedding").dotProduct(sampleVector).as("dotProduct") ) );
سویفت
let sampleVector = [0.0, 1, 2, 3, 4, 5] let result = try await db.pipeline() .collection("books") .select([ Field("embedding").dotProduct(sampleVector).as("dotProduct") ]) .execute()
Kotlin
val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0) val result = db.pipeline() .collection("books") .select( field("embedding").dotProduct(sampleVector).alias("dotProduct") ) .execute()
Java
double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").dotProduct(sampleVector).alias("dotProduct") ) .execute();
پایتون
from google.cloud.firestore_v1.pipeline_expressions import Field from google.cloud.firestore_v1.vector import Vector sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) result = ( client.pipeline() .collection("books") .select(Field.of("embedding").dot_product(sample_vector).as_("dotProduct")) .execute() )
فاصله اقلیدسی
نحو:
euclidean_distance(x: VECTOR, y: VECTOR) -> FLOAT64
شرح:
فاصله اقلیدسی بین x و y را محاسبه میکند.
Web
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await execute(db.pipeline() .collection("books") .select( field("embedding").euclideanDistance(sampleVector).as("euclideanDistance") ) );
سویفت
let sampleVector = [0.0, 1, 2, 3, 4, 5] let result = try await db.pipeline() .collection("books") .select([ Field("embedding").euclideanDistance(sampleVector).as("euclideanDistance") ]) .execute()
Kotlin
val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0) val result = db.pipeline() .collection("books") .select( field("embedding").euclideanDistance(sampleVector).alias("euclideanDistance") ) .execute()
Java
double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").euclideanDistance(sampleVector).alias("euclideanDistance") ) .execute();
پایتون
from google.cloud.firestore_v1.pipeline_expressions import Field from google.cloud.firestore_v1.vector import Vector sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) result = ( client.pipeline() .collection("books") .select( Field.of("embedding") .euclidean_distance(sample_vector) .as_("euclideanDistance") ) .execute() )
فاصله منهتن
نحو:
manhattan_distance(x: VECTOR, y: VECTOR) -> FLOAT64
شرح:
فاصله منهتن بین x و y را محاسبه میکند.
طول بردار
نحو:
vector_length(vector: VECTOR) -> INT64
شرح:
تعداد عناصر موجود در یک VECTOR را برمیگرداند.
Web
const result = await execute(db.pipeline() .collection("books") .select( field("embedding").vectorLength().as("vectorLength") ) );
سویفت
let result = try await db.pipeline() .collection("books") .select([ Field("embedding").vectorLength().as("vectorLength") ]) .execute()
Kotlin
val result = db.pipeline() .collection("books") .select( field("embedding").vectorLength().alias("vectorLength") ) .execute()
Java
Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").vectorLength().alias("vectorLength") ) .execute();
پایتون
from google.cloud.firestore_v1.pipeline_expressions import Field result = ( client.pipeline() .collection("books") .select(Field.of("embedding").vector_length().as_("vectorLength")) .execute() )