地理查询

许多应用程序都有按物理位置索引的文档。例如,您的应用可能允许用户浏览其当前位置附近的商店。

云的FireStore只允许每个复合查询单范围子句,这意味着我们不能通过简单地存储的纬度和经度作为单独的字段和查询的边界框进行地理查询。

解决方案:Geohashes

地理散列是用于编码的系统(latitude, longitude)对成单个Base32字符串。在 Geohash 系统中,世界被划分为一个矩形网格。 Geohash 字符串的每个字符指定前缀哈希的 32 个细分之一。例如,地理散列abcd是完全容纳在较大的地理散列内32四个字符散列一个abc

两个散列之间的共享前缀越长,它们就越接近彼此。例如abcdef更接近abcdegabcdff 。然而,反过来却是不正确的!两个区域可能非常接近,但具有非常不同的 Geohashes:

Geohashes 相距甚远

我们可以使用 Geohashes 以合理的效率在 Cloud Firestore 中按位置存储和查询文档,同时只需要一个索引字段。

安装辅助库

创建和解析 Geohashes 涉及一些棘手的数学运算,因此我们创建了辅助库来抽象 Android、iOS 和 Web 上最困难的部分:

网络

// Install from NPM. If you prefer to use a static .js file visit
// https://github.com/firebase/geofire-js/releases and download
// geofire-common.min.js from the latest version
npm install --save geofire-common

迅速

// Add this to your Podfile
pod 'GeoFire/Utils'

爪哇

// Add this to your app/build.gradle
implementation 'com.firebase:geofire-android-common:3.1.0'

存储 Geohashes

对于要按位置索引的每个文档,您需要存储一个 Geohash 字段:

网络

// Compute the GeoHash for a lat/lng point
const lat = 51.5074;
const lng = 0.1278;
const hash = geofire.geohashForLocation([lat, lng]);

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
const londonRef = db.collection('cities').doc('LON');
londonRef.update({
  geohash: hash,
  lat: lat,
  lng: lng
}).then(() => {
  // ...
});

迅速

// Compute the GeoHash for a lat/lng point
let latitude = 51.5074
let longitude = 0.12780
let location = CLLocationCoordinate2D(latitude: latitude, longitude: longitude)

let hash = GFUtils.geoHash(forLocation: location)

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
let documentData: [String: Any] = [
    "geohash": hash,
    "lat": latitude,
    "lng": longitude
]

let londonRef = db.collection("cities").document("LON")
londonRef.updateData(documentData) { error in
    // ...
}

爪哇

// Compute the GeoHash for a lat/lng point
double lat = 51.5074;
double lng = 0.1278;
String hash = GeoFireUtils.getGeoHashForLocation(new GeoLocation(lat, lng));

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
Map<String, Object> updates = new HashMap<>();
updates.put("geohash", hash);
updates.put("lat", lat);
updates.put("lng", lng);

DocumentReference londonRef = db.collection("cities").document("LON");
londonRef.update(updates)
        .addOnCompleteListener(new OnCompleteListener<Void>() {
            @Override
            public void onComplete(@NonNull Task<Void> task) {
                // ...
            }
        });

查询 Geohashes

Geohashes 允许我们通过在 Geohash 字段上加入一组查询来近似区域查询,然后过滤掉一些误报:

网络

// Find cities within 50km of London
const center = [51.5074, 0.1278];
const radiusInM = 50 * 1000;

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
const bounds = geofire.geohashQueryBounds(center, radiusInM);
const promises = [];
for (const b of bounds) {
  const q = db.collection('cities')
    .orderBy('geohash')
    .startAt(b[0])
    .endAt(b[1]);

  promises.push(q.get());
}

// Collect all the query results together into a single list
Promise.all(promises).then((snapshots) => {
  const matchingDocs = [];

  for (const snap of snapshots) {
    for (const doc of snap.docs) {
      const lat = doc.get('lat');
      const lng = doc.get('lng');

      // We have to filter out a few false positives due to GeoHash
      // accuracy, but most will match
      const distanceInKm = geofire.distanceBetween([lat, lng], center);
      const distanceInM = distanceInKm * 1000;
      if (distanceInM <= radiusInM) {
        matchingDocs.push(doc);
      }
    }
  }

  return matchingDocs;
}).then((matchingDocs) => {
  // Process the matching documents
  // ...
});

迅速

// Find cities within 50km of London
let center = CLLocationCoordinate2D(latitude: 51.5074, longitude: 0.1278)
let radiusInM: Double = 50 * 1000

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
let queryBounds = GFUtils.queryBounds(forLocation: center,
                                      withRadius: radiusInM)
let queries = queryBounds.map { bound -> Query in
    return db.collection("cities")
        .order(by: "geohash")
        .start(at: [bound.startValue])
        .end(at: [bound.endValue])
}

var matchingDocs = [QueryDocumentSnapshot]()
// Collect all the query results together into a single list
func getDocumentsCompletion(snapshot: QuerySnapshot?, error: Error?) -> () {
    guard let documents = snapshot?.documents else {
        print("Unable to fetch snapshot data. \(String(describing: error))")
        return
    }

    for document in documents {
        let lat = document.data()["lat"] as? Double ?? 0
        let lng = document.data()["lng"] as? Double ?? 0
        let coordinates = CLLocation(latitude: lat, longitude: lng)
        let centerPoint = CLLocation(latitude: center.latitude, longitude: center.longitude)

        // We have to filter out a few false positives due to GeoHash accuracy, but
        // most will match
        let distance = GFUtils.distance(from: centerPoint, to: coordinates)
        if distance <= radiusInM {
            matchingDocs.append(document)
        }
    }
}

// After all callbacks have executed, matchingDocs contains the result. Note that this
// sample does not demonstrate how to wait on all callbacks to complete.
for query in queries {
    query.getDocuments(completion: getDocumentsCompletion)
}

爪哇

// Find cities within 50km of London
final GeoLocation center = new GeoLocation(51.5074, 0.1278);
final double radiusInM = 50 * 1000;

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
List<GeoQueryBounds> bounds = GeoFireUtils.getGeoHashQueryBounds(center, radiusInM);
final List<Task<QuerySnapshot>> tasks = new ArrayList<>();
for (GeoQueryBounds b : bounds) {
    Query q = db.collection("cities")
            .orderBy("geohash")
            .startAt(b.startHash)
            .endAt(b.endHash);

    tasks.add(q.get());
}

// Collect all the query results together into a single list
Tasks.whenAllComplete(tasks)
        .addOnCompleteListener(new OnCompleteListener<List<Task<?>>>() {
            @Override
            public void onComplete(@NonNull Task<List<Task<?>>> t) {
                List<DocumentSnapshot> matchingDocs = new ArrayList<>();

                for (Task<QuerySnapshot> task : tasks) {
                    QuerySnapshot snap = task.getResult();
                    for (DocumentSnapshot doc : snap.getDocuments()) {
                        double lat = doc.getDouble("lat");
                        double lng = doc.getDouble("lng");

                        // We have to filter out a few false positives due to GeoHash
                        // accuracy, but most will match
                        GeoLocation docLocation = new GeoLocation(lat, lng);
                        double distanceInM = GeoFireUtils.getDistanceBetween(docLocation, center);
                        if (distanceInM <= radiusInM) {
                            matchingDocs.add(doc);
                        }
                    }
                }

                // matchingDocs contains the results
                // ...
            }
        });

限制

使用 Geohashes 查询位置为我们提供了新的功能,但也有其自身的局限性:

  • 误报-由地理散列查询不准确,你必须过滤掉客户端上的假阳性结果。这些额外的读取会增加应用的成本和延迟。
  • 边缘例-这个查询方法依赖于估算经度/纬度的线之间的距离。随着点越来越接近北极或南极,此估计的准确性会降低,这意味着 Geohash 查询在极端纬度上有更多误报。