আপনি AutoML Vision Edge ব্যবহার করে আপনার নিজের মডেলকে প্রশিক্ষণ দেওয়ার পরে, আপনি ছবিগুলিকে লেবেল করতে আপনার অ্যাপে এটি ব্যবহার করতে পারেন৷
আপনি শুরু করার আগে
- যদি আপনি ইতিমধ্যেই না করে থাকেন তাহলে আপনার Android প্রকল্পে Firebase যোগ করুন ।
- আপনার মডিউল (অ্যাপ-লেভেল) গ্রেডল ফাইলে (সাধারণত
app/build.gradle
) ML কিট অ্যান্ড্রয়েড লাইব্রেরির নির্ভরতা যুক্ত করুন :apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5' }
1. মডেল লোড করুন
এমএল কিট ডিভাইসে আপনার অটোএমএল-জেনারেটেড মডেল চালায়। যাইহোক, আপনি ML Kit কনফিগার করতে পারেন আপনার মডেলটিকে দূরবর্তীভাবে Firebase থেকে, স্থানীয় স্টোরেজ থেকে বা উভয় থেকে লোড করতে।
Firebase-এ মডেলটিকে হোস্ট করার মাধ্যমে, আপনি একটি নতুন অ্যাপ সংস্করণ প্রকাশ না করেই মডেলটি আপডেট করতে পারেন এবং আপনি ব্যবহারকারীদের বিভিন্ন সেটের কাছে গতিশীলভাবে বিভিন্ন মডেল পরিবেশন করতে Remote Config এবং A/B Testing ব্যবহার করতে পারেন।
আপনি যদি শুধুমাত্র Firebase-এর সাথে হোস্ট করে মডেলটি প্রদান করতে চান এবং এটিকে আপনার অ্যাপের সাথে বান্ডিল না করে, তাহলে আপনি আপনার অ্যাপের প্রাথমিক ডাউনলোডের আকার কমাতে পারেন। মনে রাখবেন, যদিও, মডেলটি আপনার অ্যাপের সাথে বান্ডিল না থাকলে, আপনার অ্যাপটি প্রথমবারের মতো মডেলটি ডাউনলোড না করা পর্যন্ত কোনো মডেল-সম্পর্কিত কার্যকারিতা উপলব্ধ হবে না।
আপনার অ্যাপের সাথে আপনার মডেলকে একত্রিত করে, আপনি নিশ্চিত করতে পারেন যে Firebase-হোস্টেড মডেলটি উপলব্ধ না থাকলে আপনার অ্যাপের ML বৈশিষ্ট্যগুলি এখনও কাজ করে।
একটি Firebase-হোস্টেড মডেল উৎস কনফিগার করুন
দূরবর্তীভাবে-হোস্ট করা মডেল ব্যবহার করতে, একটি FirebaseAutoMLRemoteModel
অবজেক্ট তৈরি করুন, আপনি মডেলটি প্রকাশ করার সময় যে নামটি নির্ধারণ করেছিলেন তা উল্লেখ করে:
// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();
// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()
তারপরে, আপনি যে শর্তে ডাউনলোড করার অনুমতি দিতে চান তা উল্লেখ করে মডেল ডাউনলোড টাস্ক শুরু করুন। যদি মডেলটি ডিভাইসে না থাকে, বা মডেলটির একটি নতুন সংস্করণ উপলব্ধ থাকলে, টাস্কটি অসিঙ্ক্রোনাসভাবে Firebase থেকে মডেলটি ডাউনলোড করবে:
FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener(new OnCompleteListener<Void>() {
@Override
public void onComplete(@NonNull Task<Void> task) {
// Success.
}
});
val conditions = FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Success.
}
অনেক অ্যাপ তাদের ইনিশিয়ালাইজেশন কোডে ডাউনলোড টাস্ক শুরু করে, কিন্তু মডেল ব্যবহার করার আগে আপনি যেকোন সময়ে তা করতে পারেন।
একটি স্থানীয় মডেল উৎস কনফিগার করুন
আপনার অ্যাপের সাথে মডেল বান্ডিল করতে:
- আপনি Firebase কনসোল থেকে ডাউনলোড করা জিপ সংরক্ষণাগার থেকে মডেল এবং এর মেটাডেটা বের করুন। আমরা সুপারিশ করি যে আপনি ফাইলগুলি ডাউনলোড করার সময় ব্যবহার করুন, পরিবর্তন ছাড়াই (ফাইলের নাম সহ)।
আপনার অ্যাপ প্যাকেজে আপনার মডেল এবং এর মেটাডেটা ফাইলগুলি অন্তর্ভুক্ত করুন:
- আপনার প্রোজেক্টে কোনো সম্পদ ফোল্ডার না থাকলে,
app/
ফোল্ডারে ডান-ক্লিক করে নতুন > ফোল্ডার > সম্পদ ফোল্ডারে ক্লিক করে একটি তৈরি করুন। - মডেল ফাইল ধারণ করতে সম্পদ ফোল্ডারের অধীনে একটি সাব-ফোল্ডার তৈরি করুন।
-
model.tflite
,dict.txt
, এবংmanifest.json
ফাইলগুলি সাব-ফোল্ডারে অনুলিপি করুন (তিনটি ফাইলই একই ফোল্ডারে থাকতে হবে)।
- আপনার প্রোজেক্টে কোনো সম্পদ ফোল্ডার না থাকলে,
- আপনার অ্যাপের
build.gradle
ফাইলে নিম্নলিখিত যোগ করুন যাতে অ্যাপটি তৈরি করার সময় Gradle মডেল ফাইলটি সংকুচিত করে না: মডেল ফাইলটি অ্যাপ প্যাকেজে অন্তর্ভুক্ত করা হবে এবং একটি কাঁচা সম্পদ হিসাবে ML কিটের কাছে উপলব্ধ হবে৷android { // ... aaptOptions { noCompress "tflite" } }
- একটি
FirebaseAutoMLLocalModel
অবজেক্ট তৈরি করুন, মডেল ম্যানিফেস্ট ফাইলের পথ নির্দিষ্ট করে:FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build();
val localModel = FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build()
আপনার মডেল থেকে একটি ইমেজ লেবেলার তৈরি করুন
আপনি আপনার মডেল উত্সগুলি কনফিগার করার পরে, তাদের মধ্যে একটি থেকে একটি FirebaseVisionImageLabeler
অবজেক্ট তৈরি করুন৷
যদি আপনার কাছে শুধুমাত্র স্থানীয়ভাবে বান্ডিল করা মডেল থাকে, তাহলে শুধু আপনার FirebaseAutoMLLocalModel
অবজেক্ট থেকে একটি লেবেলার তৈরি করুন এবং আপনার প্রয়োজনীয় কনফিডেন্স স্কোর থ্রেশহোল্ড কনফিগার করুন ( আপনার মডেলের মূল্যায়ন দেখুন):
FirebaseVisionImageLabeler labeler;
try {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build();
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// ...
}
val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
আপনার যদি দূরবর্তীভাবে-হোস্ট করা মডেল থাকে, তাহলে আপনাকে এটি চালানোর আগে এটি ডাউনলোড করা হয়েছে কিনা তা পরীক্ষা করতে হবে। আপনি মডেল ম্যানেজারের isModelDownloaded()
পদ্ধতি ব্যবহার করে মডেল ডাউনলোড টাস্কের স্থিতি পরীক্ষা করতে পারেন।
যদিও লেবেলারটি চালানোর আগে আপনাকে শুধুমাত্র এটি নিশ্চিত করতে হবে, যদি আপনার কাছে দূরবর্তীভাবে-হোস্ট করা মডেল এবং স্থানীয়ভাবে-বান্ডেল করা মডেল উভয়ই থাকে, তাহলে ইমেজ লেবেলারকে ইনস্ট্যান্টিয়েট করার সময় এই চেকটি সম্পাদন করা বোধগম্য হতে পারে: যদি দূরবর্তী মডেল থেকে একটি লেবেলার তৈরি করুন এটি ডাউনলোড করা হয়েছে, এবং অন্যথায় স্থানীয় মডেল থেকে।
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
}
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate threshold.
.build();
FirebaseVisionImageLabeler labeler;
try {
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// Error.
}
}
});
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
} else {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Firebase console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}
যদি আপনার কাছে শুধুমাত্র একটি দূরবর্তীভাবে হোস্ট করা মডেল থাকে, তাহলে আপনি মডেল-সম্পর্কিত কার্যকারিতা অক্ষম করুন-উদাহরণস্বরূপ, আপনার UI-এর ধূসর-আউট বা অংশ লুকান-যতক্ষণ না আপনি নিশ্চিত করেন যে মডেলটি ডাউনলোড করা হয়েছে। আপনি মডেল ম্যানেজারের download()
পদ্ধতিতে একজন শ্রোতাকে সংযুক্ত করে এটি করতে পারেন:
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. ইনপুট ইমেজ প্রস্তুত করুন
তারপর, আপনি লেবেল করতে চান এমন প্রতিটি চিত্রের জন্য, এই বিভাগে বর্ণিত বিকল্পগুলির একটি ব্যবহার করে একটি FirebaseVisionImage
অবজেক্ট তৈরি করুন এবং এটিকে FirebaseVisionImageLabeler
এর একটি উদাহরণে প্রেরণ করুন (পরবর্তী বিভাগে বর্ণিত)।
আপনি একটি media.Image
থেকে একটি FirebaseVisionImage
অবজেক্ট তৈরি করতে পারেন। ইমেজ অবজেক্ট, ডিভাইসে একটি ফাইল, একটি বাইট অ্যারে, বা একটি Bitmap
অবজেক্ট:
একটি
media.Image
থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে। ইমেজ অবজেক্ট, যেমন একটি ডিভাইসের ক্যামেরা থেকে একটি ইমেজ ক্যাপচার করার সময়,media.Image
পাস করুন। ইমেজ অবজেক্ট এবং ছবির রোটেশনFirebaseVisionImage.fromMediaImage()
এ।আপনি যদি CameraX লাইব্রেরি ব্যবহার করেন,
OnImageCapturedListener
এবংImageAnalysis.Analyzer
ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করে, তাই আপনাকেFirebaseVisionImage.fromMediaImage()
কল করার আগে ML কিটেরROTATION_
ধ্রুবকগুলির মধ্যে একটিতে ঘূর্ণন রূপান্তর করতে হবে।private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
আপনি যদি এমন একটি ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে চিত্রের ঘূর্ণন দেয়, আপনি ডিভাইসের ঘূর্ণন এবং ডিভাইসে ক্যামেরা সেন্সরের অভিযোজন থেকে এটি গণনা করতে পারেন:
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
তারপর,
media.Image
অবজেক্ট এবং ঘূর্ণন মানFirebaseVisionImage.fromMediaImage()
এ পাস করুন :FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- একটি ফাইল URI থেকে একটি
FirebaseVisionImage
অবজেক্ট তৈরি করতে, অ্যাপ প্রসঙ্গ এবং ফাইল URIFirebaseVisionImage.fromFilePath()
-এ পাস করুন। এটি উপযোগী যখন আপনি একটিACTION_GET_CONTENT
উদ্দেশ্য ব্যবহার করে ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করেন৷FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- একটি
ByteBuffer
বা একটি বাইট অ্যারে থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে, প্রথমেmedia.Image
ইনপুটের জন্য উপরে বর্ণিত চিত্রের ঘূর্ণন গণনা করুন৷তারপরে, একটি
FirebaseVisionImageMetadata
অবজেক্ট তৈরি করুন যাতে ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং বিন্যাস এবং ঘূর্ণন থাকে:FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
একটি
FirebaseVisionImage
অবজেক্ট তৈরি করতে বাফার বা অ্যারে এবং মেটাডেটা অবজেক্ট ব্যবহার করুন:FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- একটি
Bitmap
বস্তু থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে:FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
অবজেক্ট দ্বারা উপস্থাপিত চিত্রটি অবশ্যই খাড়া হতে হবে, কোন অতিরিক্ত ঘূর্ণনের প্রয়োজন নেই।
3. ইমেজ লেবেলার চালান
একটি ছবিতে অবজেক্ট লেবেল করতে, FirebaseVisionImage
অবজেক্টটিকে FirebaseVisionImageLabeler
এর processImage()
পদ্ধতিতে পাস করুন।
labeler.processImage(image)
.addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
@Override
public void onSuccess(List<FirebaseVisionImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
labeler.processImage(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
ইমেজ লেবেলিং সফল হলে, FirebaseVisionImageLabel
অবজেক্টের একটি অ্যারে সফল শ্রোতার কাছে পাঠানো হবে। প্রতিটি বস্তু থেকে, আপনি চিত্রে স্বীকৃত একটি বৈশিষ্ট্য সম্পর্কে তথ্য পেতে পারেন।
যেমন:
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
float confidence = label.getConfidence();
}
for (label in labels) {
val text = label.text
val confidence = label.confidence
}
রিয়েল-টাইম কর্মক্ষমতা উন্নত করার টিপস
- থ্রটল ডিটেক্টর কল. ডিটেক্টর চলাকালীন একটি নতুন ভিডিও ফ্রেম উপলব্ধ হলে, ফ্রেমটি ফেলে দিন।
- আপনি যদি ইনপুট ইমেজে গ্রাফিক্স ওভারলে করার জন্য ডিটেক্টরের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফল পান, তারপর একটি একক ধাপে চিত্র এবং ওভারলে রেন্ডার করুন। এটি করার মাধ্যমে, আপনি প্রতিটি ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার প্রদর্শন পৃষ্ঠে রেন্ডার করবেন।
আপনি Camera2 API ব্যবহার করলে,
ImageFormat.YUV_420_888
ফরম্যাটে ছবি ক্যাপচার করুন।আপনি পুরানো ক্যামেরা API ব্যবহার করলে,
ImageFormat.NV21
ফর্ম্যাটে ছবিগুলি ক্যাপচার করুন৷