Vous pouvez utiliser ML Kit pour reconnaître du texte dans des images. ML Kit dispose à la fois d'une API à usage général adaptée à la reconnaissance du texte dans les images, comme le texte d'un panneau de signalisation, et d'une API optimisée pour la reconnaissance du texte des documents. L'API à usage général propose des modèles sur l'appareil et dans le cloud. La reconnaissance du texte dans les documents n'est disponible qu'en tant que modèle cloud. Consultez le Présentation pour comparer les cloud et sur appareil.
Avant de commencer
- Si ce n'est pas déjà fait, Ajoutez Firebase à votre projet Android.
- Ajouter les dépendances des bibliothèques Android ML Kit à votre module
Fichier Gradle (au niveau de l'application) (généralement
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' }
-
Facultatif, mais recommandé: si vous utilisez l'API sur l'appareil, configurez votre
pour télécharger automatiquement le modèle de ML sur l'appareil une fois que votre application
installé depuis le Play Store.
Pour ce faire, ajoutez la déclaration suivante au fichier Fichier
AndroidManifest.xml
: Si vous n'activez pas les téléchargements de modèles au moment de l'installation, le modèle sera téléchargée la première fois que vous exécutez le détecteur sur l’appareil. Demandes que vous effectuez avant la fin du téléchargement ne produira aucun résultat.<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="ocr" /> <!-- To use multiple models: android:value="ocr,model2,model3" --> </application>
-
Si vous souhaitez utiliser le modèle basé dans le cloud et que vous n'avez pas encore activé les API dans le cloud pour votre projet, faites-le maintenant:
- Ouvrez le ML Kit page des API de la console Firebase.
-
Si vous n'avez pas encore fait passer votre projet à un forfait Blaze, cliquez sur Pour ce faire, effectuez une mise à niveau. (Vous ne serez invité à effectuer la mise à niveau projet n'est pas inclus dans la formule Blaze.)
Seuls les projets de niveau Blaze peuvent utiliser des API dans le cloud.
- Si les API dans le cloud ne sont pas déjà activées, cliquez sur Activer les services API.
Si vous souhaitez utiliser uniquement le modèle intégré à l'appareil, vous pouvez ignorer cette étape.
Vous êtes maintenant prêt à commencer à reconnaître du texte dans des images.
Consignes pour les images d'entrée
-
Pour que ML Kit reconnaisse le texte avec précision, les images d'entrée doivent contenir du texte représenté par suffisamment de données de pixels. Dans l'idéal, pour l'alphabet chaque caractère doit faire au moins 16 x 16 pixels. Pour le chinois, le japonais et le coréen (uniquement pris en charge par les API dans le cloud), chacun doit mesurer 24 x 24 pixels. Pour toutes les langues, il n'y a généralement pas moins de précision pour les caractères supérieurs à 24 x 24 pixels.
Par exemple, une image de 640 x 480 pixels peut convenir pour numériser une carte de visite qui occupe toute la largeur de l'image. Pour numériser un document imprimé sur de papier au format lettre, une image de 720 x 1 280 pixels peut être nécessaire.
-
Une mise au point médiocre de l'image peut nuire à la précision de la reconnaissance du texte. Si vous n'êtes pas obtenir des résultats acceptables, essayez de demander à l'utilisateur de reprendre l'image.
-
Si vous reconnaissez du texte dans une application en temps réel, vous pouvez également les dimensions globales des images d'entrée. Plus petite les images peuvent être traitées plus rapidement. Pour réduire la latence, capturez-les à une résolution inférieure (en gardant à l'esprit les exigences de précision ci-dessus) ; pour s'assurer que le texte occupe le plus de place possible dans l'image. Voir aussi Conseils pour améliorer les performances en temps réel
Détectez du texte dans des images
Pour reconnaître du texte dans une image à l'aide d'un modèle sur l'appareil ou dans le cloud, exécutez la reconnaissance de texte comme décrit ci-dessous.
1. Exécuter la reconnaissance de texte
Pour reconnaître du texte dans une image, créez un objetFirebaseVisionImage
.
à partir d'un Bitmap
, d'un media.Image
, d'un ByteBuffer
, d'un tableau d'octets ou d'un fichier sur
l'appareil. Transmettez ensuite l'objet FirebaseVisionImage
à la méthode processImage
de FirebaseVisionTextRecognizer
.
Créez un objet
FirebaseVisionImage
à partir de votre image.-
Pour créer un objet
FirebaseVisionImage
à partir d'un objetmedia.Image
, par exemple lorsque vous capturez une image à partir de l'appareil photo d'un appareil, transmettez l'objetmedia.Image
et la rotation de l'image àFirebaseVisionImage.fromMediaImage()
.Si vous utilisez les la bibliothèque CameraX, les
OnImageCapturedListener
et Les classesImageAnalysis.Analyzer
calculent la valeur de rotation Il vous suffit donc de convertir la rotation en une ConstantesROTATION_
avant l'appelFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Si vous n'utilisez pas de bibliothèque d'appareils photo qui vous permet de faire pivoter l'image, peut la calculer à partir de la rotation de l'appareil et de l'orientation de la caméra capteur de l'appareil:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Ensuite, transmettez l'objet
media.Image
et valeur de rotation surFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Pour créer un objet
FirebaseVisionImage
à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI du fichierFirebaseVisionImage.fromFilePath()
Cela est utile lorsque vous Utiliser un intentACTION_GET_CONTENT
pour inviter l'utilisateur à sélectionner une image de son application Galerie.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Pour créer un objet
FirebaseVisionImage
à partir d'unByteBuffer
ou un tableau d'octets, calculez d'abord l'image comme décrit ci-dessus pour l'entréemedia.Image
.Ensuite, créez un objet
FirebaseVisionImageMetadata
. qui contient la hauteur, la largeur, le format d'encodage des couleurs de l'image et rotation:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Utilisez le tampon ou le tableau ainsi que l'objet de métadonnées pour créer une Objet
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Pour créer un objet
FirebaseVisionImage
à partir d'un ObjetBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
doit être à la verticale, sans effectuer de rotation supplémentaire.
-
Obtenez une instance de
FirebaseVisionTextRecognizer
.Pour utiliser le modèle sur l'appareil:
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getOnDeviceTextRecognizer();
Kotlin+KTX
val detector = FirebaseVision.getInstance() .onDeviceTextRecognizer
Pour utiliser le modèle basé dans le cloud :
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getCloudTextRecognizer(); // Or, to change the default settings: // FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() // .getCloudTextRecognizer(options);
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build();
Kotlin+KTX
val detector = FirebaseVision.getInstance().cloudTextRecognizer // Or, to change the default settings: // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build()
Enfin, transmettez l'image à la méthode
processImage
:Java
Task<FirebaseVisionText> result = detector.processImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText firebaseVisionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.processImage(image) .addOnSuccessListener { firebaseVisionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. Extraire le texte de blocs de texte reconnu
Si l'opération de reconnaissance de texte réussit, un L'objetFirebaseVisionText
sera transmis à l'API
l'écouteur. Un objet FirebaseVisionText
contient le texte complet reconnu dans l'image et zéro ou plusieurs objets TextBlock
.
Chaque TextBlock
représente un bloc de texte rectangulaire, qui contient zéro ou
d'autres objets Line
. Chaque objet Line
contient zéro ou plusieurs
Les objets Element
, qui représentent des mots et des objets de type mot
entités (dates, nombres, etc.).
Pour chaque objet TextBlock
, Line
et Element
, vous pouvez obtenir le texte
reconnues dans la région et ses coordonnées de délimitation.
Exemple :
Java
String resultText = result.getText(); for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionText.Line line: block.getLines()) { String lineText = line.getText(); Float lineConfidence = line.getConfidence(); List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (FirebaseVisionText.Element element: line.getElements()) { String elementText = element.getText(); Float elementConfidence = element.getConfidence(); List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); } } }
Kotlin+KTX
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockConfidence = block.confidence val blockLanguages = block.recognizedLanguages val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineConfidence = line.confidence val lineLanguages = line.recognizedLanguages val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementConfidence = element.confidence val elementLanguages = element.recognizedLanguages val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Conseils pour améliorer les performances en temps réel
Si vous souhaitez utiliser le modèle sur l'appareil pour reconnaître du texte en temps réel application, suivez ces consignes pour obtenir une fréquence d'images optimale:
- Limitez les appels vers le programme de reconnaissance de texte. Si une nouvelle image vidéo devient disponible lorsque l'outil de reconnaissance de texte est en cours d'exécution, supprimez le cadre.
- Si vous utilisez la sortie du lecteur de texte pour superposer des éléments graphiques à l'image d'entrée, obtenez d'abord le résultat de ML Kit, puis affichez l'image et la superposition en une seule étape. Cela vous permet d'afficher sur la surface d'affichage une seule fois pour chaque trame d'entrée.
-
Si vous utilisez l'API Camera2, capturez des images Format
ImageFormat.YUV_420_888
.Si vous utilisez l'ancienne API Camera, capturez les images Format
ImageFormat.NV21
. - Envisagez de prendre des images en basse résolution. Cependant, gardez aussi à l'esprit aux exigences de cette API concernant les dimensions de l'image.
Étapes suivantes
- Avant de déployer en production une application qui utilise une API Cloud, vous devez effectuer quelques mesures supplémentaires pour prévenir et atténuer l'effet d'un accès non autorisé à l'API.
Reconnaître du texte dans des images de documents
Pour reconnaître le texte d'un document, configurez et exécutez de documents texte comme décrit ci-dessous.
L'API de reconnaissance de document texte, décrite ci-dessous, fournit une interface qui
est conçu pour être plus pratique pour travailler avec des images de documents. Toutefois,
Si vous préférez l'interface fournie par l'API FirebaseVisionTextRecognizer
,
vous pouvez l'utiliser pour analyser des documents en configurant
pour utiliser le modèle de texte dense.
Pour utiliser l'API de reconnaissance de document texte:
1. Exécuter la reconnaissance de texte
Pour reconnaître du texte dans une image, créez un objetFirebaseVisionImage
à partir de :
un Bitmap
, media.Image
, ByteBuffer
, un tableau d'octets ou un fichier sur l'appareil.
Ensuite, transmettez l'objet FirebaseVisionImage
à la
La méthode processImage
de FirebaseVisionDocumentTextRecognizer
.
Créez un objet
FirebaseVisionImage
à partir de votre image.-
Pour créer un objet
FirebaseVisionImage
à partir d'un un objetmedia.Image
, par exemple lors de la capture d'une image à partir d'un l'appareil photo de l'appareil, transmettez l'objetmedia.Image
et l'image la rotation surFirebaseVisionImage.fromMediaImage()
.Si vous utilisez les la bibliothèque CameraX, les
OnImageCapturedListener
et Les classesImageAnalysis.Analyzer
calculent la valeur de rotation Il vous suffit donc de convertir la rotation en une ConstantesROTATION_
avant l'appelFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Si vous n'utilisez pas de bibliothèque d'appareils photo qui vous permet de faire pivoter l'image, peut la calculer à partir de la rotation de l'appareil et de l'orientation de la caméra capteur de l'appareil:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Ensuite, transmettez l'objet
media.Image
et valeur de rotation surFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Pour créer un objet
FirebaseVisionImage
à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI du fichierFirebaseVisionImage.fromFilePath()
Cela est utile lorsque vous Utiliser un intentACTION_GET_CONTENT
pour inviter l'utilisateur à sélectionner une image de son application Galerie.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Pour créer un objet
FirebaseVisionImage
à partir d'unByteBuffer
ou un tableau d'octets, calculez d'abord l'image comme décrit ci-dessus pour l'entréemedia.Image
.Ensuite, créez un objet
FirebaseVisionImageMetadata
. qui contient la hauteur, la largeur, le format d'encodage des couleurs de l'image et rotation:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Utilisez le tampon ou le tableau ainsi que l'objet de métadonnées pour créer une Objet
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Pour créer un objet
FirebaseVisionImage
à partir d'un ObjetBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
doit être à l'endroit, sans rotation supplémentaire requise.
-
Obtenir une instance de
FirebaseVisionDocumentTextRecognizer
:Java
FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer();
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudDocumentRecognizerOptions options = new FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build(); FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .cloudDocumentTextRecognizer
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build() val detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options)
Enfin, transmettez l'image à la méthode
processImage
:Java
detector.processImage(myImage) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() { @Override public void onSuccess(FirebaseVisionDocumentText result) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
detector.processImage(myImage) .addOnSuccessListener { firebaseVisionDocumentText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. Extraire le texte de blocs de texte reconnu
Si l'opération de reconnaissance de texte réussit, elle renvoie une
objet FirebaseVisionDocumentText
. Un objet FirebaseVisionDocumentText
contient le texte complet reconnu dans l'image et une hiérarchie d'objets qui reflètent la structure du document reconnu :
FirebaseVisionDocumentText.Block
FirebaseVisionDocumentText.Paragraph
FirebaseVisionDocumentText.Word
FirebaseVisionDocumentText.Symbol
Pour chaque objet Block
, Paragraph
, Word
et Symbol
, vous pouvez obtenir le texte reconnu dans la région et les coordonnées de délimitation de la région.
Exemple :
Java
String resultText = result.getText(); for (FirebaseVisionDocumentText.Block block: result.getBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) { String paragraphText = paragraph.getText(); Float paragraphConfidence = paragraph.getConfidence(); List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages(); Rect paragraphFrame = paragraph.getBoundingBox(); for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) { String wordText = word.getText(); Float wordConfidence = word.getConfidence(); List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages(); Rect wordFrame = word.getBoundingBox(); for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) { String symbolText = symbol.getText(); Float symbolConfidence = symbol.getConfidence(); List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Kotlin+KTX
val resultText = result.text for (block in result.blocks) { val blockText = block.text val blockConfidence = block.confidence val blockRecognizedLanguages = block.recognizedLanguages val blockFrame = block.boundingBox for (paragraph in block.paragraphs) { val paragraphText = paragraph.text val paragraphConfidence = paragraph.confidence val paragraphRecognizedLanguages = paragraph.recognizedLanguages val paragraphFrame = paragraph.boundingBox for (word in paragraph.words) { val wordText = word.text val wordConfidence = word.confidence val wordRecognizedLanguages = word.recognizedLanguages val wordFrame = word.boundingBox for (symbol in word.symbols) { val symbolText = symbol.text val symbolConfidence = symbol.confidence val symbolRecognizedLanguages = symbol.recognizedLanguages val symbolFrame = symbol.boundingBox } } } }
Étapes suivantes
- Avant de déployer en production une application qui utilise une API Cloud, vous devez prendre des mesures supplémentaires pour empêcher et atténuer l'impact d'un accès non autorisé à l'API.