Memberikan label pada gambar dengan model yang dilatih AutoML di iOS

Setelah melatih model sendiri menggunakan AutoML Vision Edge, Anda dapat menggunakannya di aplikasi untuk memberi label pada gambar.

Sebelum memulai

  1. Jika Anda belum menambahkan Firebase ke aplikasi, lakukan dengan mengikuti langkah-langkahnya di panduan memulai.
  2. Sertakan library ML Kit di Podfile Anda:
    pod 'Firebase/MLVision', '6.25.0'
    pod 'Firebase/MLVisionAutoML', '6.25.0'
    
    Setelah menginstal atau mengupdate Pod project, pastikan untuk membuka project Xcode menggunakan .xcworkspace-nya.
  3. Di aplikasi Anda, impor Firebase:

    Swift

    import Firebase

    Objective-C

    @import Firebase;

1. Memuat model

ML Kit menjalankan model yang dihasilkan AutoML di perangkat. Namun, Anda dapat mengonfigurasi ML Kit untuk memuat model Anda dari jarak jauh dari Firebase, dari penyimpanan lokal, atau keduanya.

Dengan menghosting model di Firebase, Anda dapat mengupdate model tanpa merilis versi baru aplikasi. Anda juga dapat menggunakan Remote Config dan Pengujian A/B untuk menerapkan berbagai model secara dinamis ke sekelompok pengguna yang berbeda.

Jika memilih untuk hanya menyediakan model dengan menghostingnya di Firebase, dan tidak memaketkannya dengan aplikasi, Anda dapat mengurangi ukuran download awal aplikasi. Namun, ingat bahwa jika model tidak dipaketkan dengan aplikasi, fungsi yang terkait dengan model tidak akan tersedia sebelum aplikasi mendownload model untuk pertama kalinya.

Dengan memaketkan model dengan aplikasi, Anda dapat memastikan bahwa fitur ML pada aplikasi tetap berfungsi jika model yang dihosting Firebase tidak tersedia.

Mengonfigurasi sumber model yang dihosting Firebase

Untuk menggunakan model yang dihosting dari jarak jauh, buat objek AutoMLRemoteModel, dengan menyebutkan nama yang ditetapkan pada model saat Anda memublikasikannya:

Swift

let remoteModel = AutoMLRemoteModel(
    name: "your_remote_model"  // The name you assigned in the Firebase console.
)

Objective-C

FIRAutoMLRemoteModel *remoteModel = [[FIRAutoMLRemoteModel alloc]
    initWithName:@"your_remote_model"];  // The name you assigned in the Firebase console.

Kemudian, mulai tugas download model dengan menentukan kondisi yang Anda inginkan untuk mengizinkan download. Jika model tidak ada di perangkat, atau jika versi model yang lebih baru tersedia, tugas akan mendownload model dari Firebase secara asinkron:

Swift

let downloadConditions = ModelDownloadConditions(
  allowsCellularAccess: true,
  allowsBackgroundDownloading: true
)

let downloadProgress = ModelManager.modelManager().download(
  remoteModel,
  conditions: downloadConditions
)

Objective-C

FIRModelDownloadConditions *downloadConditions =
    [[FIRModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                         allowsBackgroundDownloading:YES];

NSProgress *downloadProgress =
    [[FIRModelManager modelManager] downloadRemoteModel:remoteModel
                                             conditions:downloadConditions];

Banyak aplikasi memulai tugas download dalam kode inisialisasi mereka, tetapi Anda dapat melakukannya kapan saja sebelum menggunakan model.

Mengonfigurasi sumber model lokal

Untuk memaketkan model dengan aplikasi Anda:

  1. Ekstrak model dan metadata-nya dari arsip zip yang Anda download dari Firebase console ke folder:
    your_model_directory
      |____dict.txt
      |____manifest.json
      |____model.tflite
    
    Ketiga file tersebut harus berada di folder yang sama. Sebaiknya gunakan file hasil download apa adanya, tanpa melakukan perubahan (termasuk nama file).
  2. Salin folder ke project Xcode dan berhati-hatilah saat memilih Buat referensi folder ketika melakukannya. File model dan metadata akan disertakan dalam app bundle dan tersedia untuk ML Kit.
  3. Buat objek AutoMLLocalModel dengan menentukan jalur ke file manifes model:

    Swift

    guard let manifestPath = Bundle.main.path(
        forResource: "manifest",
        ofType: "json",
        inDirectory: "your_model_directory"
    ) else { return true }
    let localModel = AutoMLLocalModel(manifestPath: manifestPath)
    

    Objective-C

    NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest"
                                                           ofType:@"json"
                                                      inDirectory:@"your_model_directory"];
    FIRAutoMLLocalModel *localModel = [[FIRAutoMLLocalModel alloc] initWithManifestPath:manifestPath];
    

Membuat pemberi label gambar dari model

Setelah mengonfigurasi sumber model, buat objek VisionImageLabeler dari salah satu sumber tersebut.

Jika hanya memiliki model yang dipaketkan secara lokal, cukup buat pemberi label dari objek AutoMLLocalModel dan konfigurasi nilai minimum skor keyakinan yang ingin Anda wajibkan (lihat Mengevaluasi model):

Swift

let options = VisionOnDeviceAutoMLImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = 0  // Evaluate your model in the Firebase console
                                 // to determine an appropriate value.
let labeler = Vision.vision().onDeviceAutoMLImageLabeler(options: options)

Objective-C

FIRVisionOnDeviceAutoMLImageLabelerOptions *options =
    [[FIRVisionOnDeviceAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = 0;  // Evaluate your model in the Firebase console
                                  // to determine an appropriate value.
FIRVisionImageLabeler *labeler =
    [[FIRVision vision] onDeviceAutoMLImageLabelerWithOptions:options];

Jika Anda memiliki model yang dihosting dari jarak jauh, Anda harus memeriksa apakah model tersebut sudah didownload sebelum menjalankannya. Anda dapat memeriksa status tugas download model menggunakan metode isModelDownloaded(remoteModel:) pengelola model.

Meskipun hanya perlu memastikan hal ini sebelum menjalankan pemberi label, jika Anda memiliki model yang dihosting dari jarak jauh dan model yang dipaketkan secara lokal, mungkin pemeriksaan ini perlu dilakukan saat membuat instance VisionImageLabeler: buat pemberi label dari model jarak jauh jika model tersebut telah didownload, dan dari model lokal jika belum didownload.

Swift

var options: VisionOnDeviceAutoMLImageLabelerOptions?
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
  options = VisionOnDeviceAutoMLImageLabelerOptions(remoteModel: remoteModel)
} else {
  options = VisionOnDeviceAutoMLImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = 0  // Evaluate your model in the Firebase console
                                 // to determine an appropriate value.
let labeler = Vision.vision().onDeviceAutoMLImageLabeler(options: options)

Objective-C

VisionOnDeviceAutoMLImageLabelerOptions *options;
if ([[FIRModelManager modelManager] isModelDownloaded:remoteModel]) {
  options = [[FIRVisionOnDeviceAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
  options = [[FIRVisionOnDeviceAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = 0.0f;  // Evaluate your model in the Firebase console
                                     // to determine an appropriate value.
FIRVisionImageLabeler *labeler = [[FIRVision vision] onDeviceAutoMLImageLabelerWithOptions:options];

Jika Anda hanya memiliki model yang dihosting dari jarak jauh, Anda harus menonaktifkan fungsi yang terkait dengan model—misalnya, menyamarkan atau menyembunyikan sebagian UI—sampai Anda mengonfirmasi bahwa model telah didownload.

Anda dapat memperoleh status download model dengan menambahkan observer ke Pusat Notifikasi default. Pastikan untuk menggunakan referensi lemah ke self di blok observer, karena proses download memerlukan waktu beberapa saat, dan objek asalnya dapat dibebaskan pada saat download selesai. Contoh:

Swift

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Objective-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              FIRRemoteModel *model = note.userInfo[FIRModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[FIRModelDownloadUserInfoKeyError];
            }];

2. Menyiapkan gambar input

Kemudian, untuk setiap gambar yang ingin diberi label, buat objek VisionImage menggunakan salah satu opsi yang dijelaskan di bagian ini dan teruskan ke instance VisionImageLabeler (dijelaskan di bagian berikutnya).

Buat objek VisionImage menggunakan UIImage atau CMSampleBufferRef.

Untuk menggunakan UIImage:

  1. Jika perlu, putar gambar sehingga properti imageOrientation-nya adalah .up.
  2. Buat objek VisionImage menggunakan UIImage yang sudah diputar dengan benar. Jangan tentukan metadata rotasi apa pun—yang harus digunakan adalah nilai default, yaitu .topLeft.

    Swift

    let image = VisionImage(image: uiImage)

    Objective-C

    FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

Untuk menggunakan CMSampleBufferRef:

  1. Buat objek VisionImageMetadata yang menentukan orientasi data gambar yang terdapat dalam buffering CMSampleBufferRef.

    Untuk mendapatkan orientasi gambar:

    Swift

    func imageOrientation(
        deviceOrientation: UIDeviceOrientation,
        cameraPosition: AVCaptureDevice.Position
        ) -> VisionDetectorImageOrientation {
        switch deviceOrientation {
        case .portrait:
            return cameraPosition == .front ? .leftTop : .rightTop
        case .landscapeLeft:
            return cameraPosition == .front ? .bottomLeft : .topLeft
        case .portraitUpsideDown:
            return cameraPosition == .front ? .rightBottom : .leftBottom
        case .landscapeRight:
            return cameraPosition == .front ? .topRight : .bottomRight
        case .faceDown, .faceUp, .unknown:
            return .leftTop
        }
    }

    Objective-C

    - (FIRVisionDetectorImageOrientation)
        imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                               cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationLeftTop;
          } else {
            return FIRVisionDetectorImageOrientationRightTop;
          }
        case UIDeviceOrientationLandscapeLeft:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationBottomLeft;
          } else {
            return FIRVisionDetectorImageOrientationTopLeft;
          }
        case UIDeviceOrientationPortraitUpsideDown:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationRightBottom;
          } else {
            return FIRVisionDetectorImageOrientationLeftBottom;
          }
        case UIDeviceOrientationLandscapeRight:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationTopRight;
          } else {
            return FIRVisionDetectorImageOrientationBottomRight;
          }
        default:
          return FIRVisionDetectorImageOrientationTopLeft;
      }
    }

    Kemudian, buat objek metadata:

    Swift

    let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
    let metadata = VisionImageMetadata()
    metadata.orientation = imageOrientation(
        deviceOrientation: UIDevice.current.orientation,
        cameraPosition: cameraPosition
    )

    Objective-C

    FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
    AVCaptureDevicePosition cameraPosition =
        AVCaptureDevicePositionBack;  // Set to the capture device you used.
    metadata.orientation =
        [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                     cameraPosition:cameraPosition];
  2. Buat objek VisionImage menggunakan objek CMSampleBufferRef dan metadata rotasi:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.metadata = metadata

    Objective-C

    FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
    image.metadata = metadata;

3. Menjalankan pemberi label gambar

Untuk memberi label pada objek dalam gambar, teruskan objek VisionImage ke metode process() VisionImageLabeler:

Swift

labeler.process(image) { labels, error in
    guard error == nil, let labels = labels else { return }

    // Task succeeded.
    // ...
}

Objective-C

[labeler
    processImage:image
      completion:^(NSArray<FIRVisionImageLabel *> *_Nullable labels, NSError *_Nullable error) {
        if (error != nil || labels == nil) {
          return;
        }

        // Task succeeded.
        // ...
      }];

Jika pelabelan gambar berhasil, array objek VisionImageLabel akan diteruskan ke pengendali penyelesaian. Dari setiap objek, Anda bisa mendapatkan informasi tentang fitur yang dikenali dalam gambar.

Contoh:

Swift

for label in labels {
    let labelText = label.text
    let confidence = label.confidence
}

Objective-C

for (FIRVisionImageLabel *label in labels) {
  NSString *labelText = label.text;
  NSNumber *confidence = label.confidence;
}

Tips untuk meningkatkan performa real-time

  • Batasi panggilan ke detektor. Jika frame video baru tersedia saat detektor sedang berjalan, hapus frame tersebut.
  • Jika Anda menggunakan output detektor untuk menempatkan grafis pada gambar input, pertama-tama dapatkan hasilnya dari ML Kit, lalu render gambar dan tempatkan grafis dalam satu langkah. Dengan demikian, Anda hanya merender ke permukaan tampilan sekali untuk setiap frame input. Lihat class previewOverlayView dan FIRDetectionOverlayView dalam aplikasi contoh showcase untuk mengetahui contohnya.