iOS에서 ML Kit로 TensorFlow Lite 모델을 사용하여 추론

ML Kit를 통해 TensorFlow Lite 모델을 사용하여 기기별 추론을 수행할 수 있습니다.

ML Kit는 iOS 9 이상을 실행하는 기기에서만 TensorFlow Lite 모델을 사용할 수 있습니다.

이 API의 사용 예는 GitHub의 ML Kit 빠른 시작 샘플을 참조하세요.

시작하기 전에

  1. 앱에 Firebase를 아직 추가하지 않았다면 시작 가이드의 단계에 따라 추가합니다.
  2. Podfile에 ML Kit 라이브러리를 포함합니다.
    pod 'Firebase/MLModelInterpreter'
    
    프로젝트의 pod를 설치하거나 업데이트한 후 .xcworkspace를 사용하여 Xcode 프로젝트를 열어야 합니다.
  3. 앱에서 Firebase를 가져옵니다.

    Swift

    import Firebase

    Objective-C

    @import Firebase;
  4. 사용하려는 TensorFlow 모델을 TensorFlow Lite 형식으로 변환합니다. TOCO: TensorFlow Lite 최적화 변환기를 참조하세요.

모델 호스팅 또는 번들로 묶기

앱에서 추론을 위해 TensorFlow Lite 모델을 사용하려면 ML Kit에서 모델을 사용할 수 있도록 설정해야 합니다. ML Kit는 Firebase를 사용하여 원격으로 호스팅되는 TensorFlow Lite 모델과 앱 바이너리에 번들로 묶은 TensorFlow Lite 모델 중에 하나를 사용하거나 두 모델을 모두 사용할 수 있습니다.

Firebase에서 모델을 호스팅하면 앱 버전을 새롭게 출시하지 않고 모델을 업데이트할 수 있고, 원격 구성과 A/B 테스팅을 사용하여 다양한 사용자 집합에 각기 다른 모델을 동적으로 제공할 수 있습니다.

모델을 앱과 번들로 묶지 않고 Firebase에서 호스팅하여 제공하는 방법만 선택한 경우 앱의 초기 다운로드 크기를 줄일 수 있습니다. 하지만 모델을 앱과 번들로 묶어 제공하지 않는 경우 앱에서 먼저 모델을 다운로드하기 전에는 모델 관련 기능을 사용할 수 없습니다.

모델을 앱과 번들로 묶으면 Firebase 호스팅 모델을 사용할 수 없는 경우에도 앱의 ML 기능이 계속 작동하도록 할 수 있습니다.

Firebase에서 모델 호스팅

Firebase에서 TensorFlow Lite 모델을 호스팅하는 방법은 다음과 같습니다.

  1. Firebase ConsoleML Kit 섹션에서 커스텀 탭을 클릭합니다.
  2. 커스텀 모델 추가 또는 다른 모델 추가를 클릭합니다.
  3. Firebase 프로젝트에서 모델을 식별하는 데 사용할 이름을 지정한 다음 일반적으로 .tflite 또는 .lite로 끝나는 TensorFlow Lite 모델 파일을 업로드합니다.

Firebase 프로젝트에 커스텀 모델을 추가한 후 지정한 이름을 사용하여 앱에서 모델을 참조할 수 있습니다. 언제든지 새 TensorFlow Lite 모델을 업로드할 수 있으며, 그러면 앱에서 새 모델을 다운로드한 후 다음에 앱이 다시 시작될 때 새 모델을 사용하기 시작합니다. 앱이 모델 업데이트를 시도하는 데 필요한 기기 조건을 정의할 수 있습니다. 아래를 참조하세요.

모델을 앱과 번들로 묶기

TensorFlow Lite 모델을 앱과 번들로 묶으려면 일반적으로 .tflite 또는 .lite로 끝나는 모델 파일을 Xcode 프로젝트에 추가합니다. 이때 Copy bundle resources(번들 리소스 복사)를 선택해야 합니다. 모델 파일이 앱 번들에 포함되며 ML Kit에서 사용할 수 있습니다.

모델 로드

앱에서 TensorFlow Lite 모델을 사용하려면 먼저 모델을 사용할 수 있는 위치(Firebase를 사용하는 원격 위치, 로컬 스토리지 또는 둘 다)로 ML Kit를 구성합니다. 로컬 모델과 원격 모델을 둘 다 지정한 경우 원격 모델을 사용할 수 있으면 원격 모델을 사용하고, 그렇지 않으면 로컬에 저장된 모델을 대신 사용합니다.

Firebase 호스팅 모델 구성

Firebase로 모델을 호스팅한 경우 모델을 게시할 때 할당한 이름을 지정하여 CustomRemoteModel 객체를 만듭니다.

Swift

let remoteModel = CustomRemoteModel(
  name: "your_remote_model"  // The name you assigned in the Firebase console.
)

Objective-C

// Initialize using the name you assigned in the Firebase console.
FIRCustomRemoteModel *remoteModel =
    [[FIRCustomRemoteModel alloc] initWithName:@"your_remote_model"];

이제 다운로드를 허용할 조건을 지정하여 모델 다운로드 작업을 시작합니다. 모델이 기기에 없거나 최신 버전의 모델을 사용할 수 있으면 모델이 Firebase에서 비동기식으로 다운로드됩니다.

Swift

let downloadConditions = ModelDownloadConditions(
  allowsCellularAccess: true,
  allowsBackgroundDownloading: true
)

let downloadProgress = ModelManager.modelManager().download(
  remoteModel,
  conditions: downloadConditions
)

Objective-C

FIRModelDownloadConditions *downloadConditions =
    [[FIRModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                         allowsBackgroundDownloading:YES];

NSProgress *downloadProgress =
    [[FIRModelManager modelManager] downloadRemoteModel:remoteModel
                                             conditions:downloadConditions];

대부분의 앱은 초기화 코드로 다운로드 작업을 시작하지만 모델 사용이 필요한 시점 이전에는 언제든지 다운로드할 수 있습니다.

로컬 모델 구성

모델을 앱과 번들로 묶은 경우에는 TensorFlow Lite 모델의 파일 이름을 지정하여 CustomLocalModel 객체를 만듭니다.

Swift

guard let modelPath = Bundle.main.path(
  forResource: "your_model",
  ofType: "tflite",
  inDirectory: "your_model_directory"
) else { /* Handle error. */ }
let localModel = CustomLocalModel(modelPath: modelPath)

Objective-C

NSString *modelPath = [NSBundle.mainBundle pathForResource:@"your_model"
                                                    ofType:@"tflite"
                                               inDirectory:@"your_model_directory"];
FIRCustomLocalModel *localModel =
    [[FIRCustomLocalModel alloc] initWithModelPath:modelPath];

모델에서 인터프리터 만들기

모델 소스를 구성한 후 모델 소스 중 하나에서 ModelInterpreter 객체를 만듭니다.

로컬로 번들된 모델만 있다면 CustomLocalModel 객체를 modelInterpreter(localModel:)에 전달합니다.

Swift

let interpreter = ModelInterpreter.modelInterpreter(localModel: localModel)

Objective-C

FIRModelInterpreter *interpreter =
    [FIRModelInterpreter modelInterpreterForLocalModel:localModel];

원격 호스팅 모델이 있다면 실행 전에 모델이 다운로드되었는지 확인해야 합니다. 모델 관리자의 isModelDownloaded(remoteModel:) 메서드로도 모델 다운로드 작업의 상태를 확인할 수 있습니다.

이 상태는 인터프리터 실행 전에만 확인하면 되지만, 원격 호스팅 모델과 로컬로 번들된 모델이 모두 있는 경우에는 ModelInterpreter를 인스턴스화할 때 이 확인 작업을 수행하는 것이 합리적일 수 있으며 원격 모델이 다운로드되었으면 원격 모델에서, 그렇지 않으면 로컬 모델에서 인터프리터를 만듭니다.

Swift

var interpreter: ModelInterpreter
if ModelManager.modelManager().isModelDownloaded(remoteModel) {
  interpreter = ModelInterpreter.modelInterpreter(remoteModel: remoteModel)
} else {
  interpreter = ModelInterpreter.modelInterpreter(localModel: localModel)
}

Objective-C

FIRModelInterpreter *interpreter;
if ([[FIRModelManager modelManager] isModelDownloaded:remoteModel]) {
  interpreter = [FIRModelInterpreter modelInterpreterForRemoteModel:remoteModel];
} else {
  interpreter = [FIRModelInterpreter modelInterpreterForLocalModel:localModel];
}

원격 호스팅 모델만 있다면 모델 다운로드 여부가 확인될 때까지 모델 관련 기능(예: UI 비활성화 또는 숨김) 사용을 중지해야 합니다.

기본 알림 센터에 관찰자를 연결하여 모델 다운로드 상태를 가져올 수 있습니다. 다운로드하는 데 시간이 걸릴 수 있고 다운로드가 완료되면 원래 객체가 해제될 수 있으므로 관찰자 블록의 self에 약한 참조를 사용하세요. 예를 들면 다음과 같습니다.

Swift

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Objective-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              FIRRemoteModel *model = note.userInfo[FIRModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[FIRModelDownloadUserInfoKeyError];
            }];

모델의 입력 및 출력 지정

다음으로 모델 인터프리터의 입력과 출력 형식을 구성합니다.

TensorFlow Lite 모델은 하나 이상의 다차원 배열을 입력으로 받아 출력합니다. 이러한 배열은 byte, int, long, float 값 중 하나를 포함합니다. 모델에서 사용하는 배열의 수와 차원('모양')으로 ML Kit를 구성해야 합니다.

모델의 입출력 모양과 데이터 유형을 모르는 경우 TensorFlow Lite Python 인터프리터를 사용하여 모델을 검사할 수 있습니다. 예를 들면 다음과 같습니다.

import tensorflow as tf

interpreter = tf.lite.Interpreter(model_path="my_model.tflite")
interpreter.allocate_tensors()

# Print input shape and type
print(interpreter.get_input_details()[0]['shape'])  # Example: [1 224 224 3]
print(interpreter.get_input_details()[0]['dtype'])  # Example: <class 'numpy.float32'>

# Print output shape and type
print(interpreter.get_output_details()[0]['shape'])  # Example: [1 1000]
print(interpreter.get_output_details()[0]['dtype'])  # Example: <class 'numpy.float32'>

모델의 입력과 출력 형식을 확인한 후 ModelInputOutputOptions 객체를 만들어 앱의 모델 인터프리터를 구성합니다.

예를 들어 부동 소수점 이미지 분류 모델은 N개의 224x224 3채널(RGB) 이미지 배치를 나타내는 Nx224x224x3 Float 값 배열을 입력으로 사용하여 1,000개의 Float 값 목록을 출력할 수 있습니다. 여기에서 각각의 값은 이미지가 모델이 예측하는 1,000가지 카테고리 중 하나에 속할 확률을 나타냅니다.

이러한 모델의 경우 다음과 같이 모델 인터프리터의 입력과 출력을 구성합니다.

Swift

let ioOptions = ModelInputOutputOptions()
do {
    try ioOptions.setInputFormat(index: 0, type: .float32, dimensions: [1, 224, 224, 3])
    try ioOptions.setOutputFormat(index: 0, type: .float32, dimensions: [1, 1000])
} catch let error as NSError {
    print("Failed to set input or output format with error: \(error.localizedDescription)")
}

Objective-C

FIRModelInputOutputOptions *ioOptions = [[FIRModelInputOutputOptions alloc] init];
NSError *error;
[ioOptions setInputFormatForIndex:0
                             type:FIRModelElementTypeFloat32
                       dimensions:@[@1, @224, @224, @3]
                            error:&error];
if (error != nil) { return; }
[ioOptions setOutputFormatForIndex:0
                              type:FIRModelElementTypeFloat32
                        dimensions:@[@1, @1000]
                             error:&error];
if (error != nil) { return; }

입력 데이터에 대한 추론 수행

마지막으로 모델을 사용하여 추론을 수행하려면 입력 데이터를 가져오고 모델에 필요할 수 있는 데이터에 대한 변환을 수행하고 데이터가 있는 Data 객체를 빌드합니다.

예를 들어 모델에서 이미지를 처리하고 모델의 입력 크기가 [BATCH_SIZE, 224, 224, 3] 부동 소수점 값이면 다음 예에서처럼 이미지의 색상 값을 부동 소수점 범위에 맞게 조정해야 할 수 있습니다.

Swift

let image: CGImage = // Your input image
guard let context = CGContext(
  data: nil,
  width: image.width, height: image.height,
  bitsPerComponent: 8, bytesPerRow: image.width * 4,
  space: CGColorSpaceCreateDeviceRGB(),
  bitmapInfo: CGImageAlphaInfo.noneSkipFirst.rawValue
) else {
  return false
}

context.draw(image, in: CGRect(x: 0, y: 0, width: image.width, height: image.height))
guard let imageData = context.data else { return false }

let inputs = ModelInputs()
var inputData = Data()
do {
  for row in 0 ..< 224 {
    for col in 0 ..< 224 {
      let offset = 4 * (col * context.width + row)
      // (Ignore offset 0, the unused alpha channel)
      let red = imageData.load(fromByteOffset: offset+1, as: UInt8.self)
      let green = imageData.load(fromByteOffset: offset+2, as: UInt8.self)
      let blue = imageData.load(fromByteOffset: offset+3, as: UInt8.self)

      // Normalize channel values to [0.0, 1.0]. This requirement varies
      // by model. For example, some models might require values to be
      // normalized to the range [-1.0, 1.0] instead, and others might
      // require fixed-point values or the original bytes.
      var normalizedRed = Float32(red) / 255.0
      var normalizedGreen = Float32(green) / 255.0
      var normalizedBlue = Float32(blue) / 255.0

      // Append normalized values to Data object in RGB order.
      let elementSize = MemoryLayout.size(ofValue: normalizedRed)
      var bytes = [UInt8](repeating: 0, count: elementSize)
      memcpy(&bytes, &normalizedRed, elementSize)
      inputData.append(&bytes, count: elementSize)
      memcpy(&bytes, &normalizedGreen, elementSize)
      inputData.append(&bytes, count: elementSize)
      memcpy(&ammp;bytes, &normalizedBlue, elementSize)
      inputData.append(&bytes, count: elementSize)
    }
  }
  try inputs.addInput(inputData)
} catch let error {
  print("Failed to add input: \(error)")
}

Objective-C

CGImageRef image = // Your input image
long imageWidth = CGImageGetWidth(image);
long imageHeight = CGImageGetHeight(image);
CGContextRef context = CGBitmapContextCreate(nil,
                                             imageWidth, imageHeight,
                                             8,
                                             imageWidth * 4,
                                             CGColorSpaceCreateDeviceRGB(),
                                             kCGImageAlphaNoneSkipFirst);
CGContextDrawImage(context, CGRectMake(0, 0, imageWidth, imageHeight), image);
UInt8 *imageData = CGBitmapContextGetData(context);

FIRModelInputs *inputs = [[FIRModelInputs alloc] init];
NSMutableData *inputData = [[NSMutableData alloc] initWithCapacity:0];

for (int row = 0; row < 224; row++) {
  for (int col = 0; col < 224; col++) {
    long offset = 4 * (col * imageWidth + row);
    // Normalize channel values to [0.0, 1.0]. This requirement varies
    // by model. For example, some models might require values to be
    // normalized to the range [-1.0, 1.0] instead, and others might
    // require fixed-point values or the original bytes.
    // (Ignore offset 0, the unused alpha channel)
    Float32 red = imageData[offset+1] / 255.0f;
    Float32 green = imageData[offset+2] / 255.0f;
    Float32 blue = imageData[offset+3] / 255.0f;

    [inputData appendBytes:&red length:sizeof(red)];
    [inputData appendBytes:&green length:sizeof(green)];
    [inputData appendBytes:&blue length:sizeof(blue)];
  }
}

[inputs addInput:inputData error:&error];
if (error != nil) { return nil; }

모델 입력을 준비한 후 그리고 모델 사용 가능 여부가 확인되었으면 입력, 입력/출력 옵션을 모델 인터프리터run(inputs:options:completion:) 메서드에 전달합니다.

Swift

interpreter.run(inputs: inputs, options: ioOptions) { outputs, error in
    guard error == nil, let outputs = outputs else { return }
    // Process outputs
    // ...
}

Objective-C

[interpreter runWithInputs:inputs
                   options:ioOptions
                completion:^(FIRModelOutputs * _Nullable outputs,
                             NSError * _Nullable error) {
  if (error != nil || outputs == nil) {
    return;
  }
  // Process outputs
  // ...
}];

반환된 객체의 output(index:) 메서드를 호출하여 출력을 가져올 수 있습니다. 예를 들면 다음과 같습니다.

Swift

// Get first and only output of inference with a batch size of 1
let output = try? outputs.output(index: 0) as? [[NSNumber]]
let probabilities = output??[0]

Objective-C

// Get first and only output of inference with a batch size of 1
NSError *outputError;
NSArray *probabilites = [outputs outputAtIndex:0 error:&outputError][0];

출력을 사용하는 방법은 사용 중인 모델에 따라 다릅니다.

예를 들어 다음 단계로 분류를 수행하면 결과의 색인을 색인이 나타내는 라벨에 매핑할 수 있습니다. 모델의 각 카테고리에 대한 라벨 문자열이 있는 텍스트 파일이 있다고 가정합니다. 다음 안내를 따라 라벨 문자열을 출력 확률에 매핑할 수 있습니다.

Swift

guard let labelPath = Bundle.main.path(forResource: "retrained_labels", ofType: "txt") else { return }
let fileContents = try? String(contentsOfFile: labelPath)
guard let labels = fileContents?.components(separatedBy: "\n") else { return }

for i in 0 ..< labels.count {
  if let probability = probabilities?[i] {
    print("\(labels[i]): \(probability)")
  }
}

Objective-C

NSError *labelReadError = nil;
NSString *labelPath = [NSBundle.mainBundle pathForResource:@"retrained_labels"
                                                    ofType:@"txt"];
NSString *fileContents = [NSString stringWithContentsOfFile:labelPath
                                                   encoding:NSUTF8StringEncoding
                                                      error:&labelReadError];
if (labelReadError != nil || fileContents == NULL) { return; }
NSArray<NSString *> *labels = [fileContents componentsSeparatedByString:@"\n"];
for (int i = 0; i < labels.count; i++) {
    NSString *label = labels[i];
    NSNumber *probability = probabilites[i];
    NSLog(@"%@: %f", label, probability.floatValue);
}

부록: 모델 보안

TensorFlow Lite 모델을 ML Kit에 제공하는 방식에 관계없이 ML Kit는 로컬 저장소에 표준 직렬화 protobuf 형식으로 모델을 저장합니다.

즉, 이론적으로 누구나 모델을 복사할 수 있습니다. 하지만 실제로는 대부분의 모델이 애플리케이션별로 너무나 다르며 최적화를 통해 난독화되므로 위험도는 경쟁업체가 내 코드를 분해해서 재사용하는 것과 비슷한 수준입니다. 그렇지만 앱에서 커스텀 모델을 사용하기 전에 이러한 위험성을 알고 있어야 합니다.