Po wytrenowaniu własnego modelu za pomocą AutoML Vision Edge możesz go używać w aplikacji do oznaczania obrazów.
Modele wytrenowane za pomocą AutoML Vision Edge można integrować na 2 sposoby: możesz umieścić model w folderze zasobów aplikacji lub pobrać go dynamicznie z Firebase.
Opcje grupowania modeli | |
---|---|
W pakiecie w aplikacji |
|
Hostowany w Firebase |
|
Zanim zaczniesz
Dodaj zależności do bibliotek ML Kit na Androida do pliku Gradle modułu na poziomie aplikacji, który zwykle jest
app/build.gradle
:Aby połączyć model z aplikacją:
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-custom:16.3.1' }
Aby dynamicznie pobierać model z Firebase, dodaj zależność
linkFirebase
:dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-custom:16.3.1' implementation 'com.google.mlkit:linkfirebase:16.1.0' }
Jeśli chcesz pobrać model, dodaj Firebase do projektu na Androida, jeśli nie zostało to jeszcze zrobione. Nie jest to wymagane, gdy model jest w pakiecie.
1. Wczytaj model
Konfigurowanie źródła lokalnego modelu
Aby połączyć model z aplikacją:
Wyodrębnij model i jego metadane z archiwum ZIP pobranego z konsoli Firebase. Zalecamy używanie plików w postaci pobranej, bez wprowadzania zmian (w tym nazw plików).
Umieść model i jego metadane w pakiecie aplikacji:
- Jeśli w projekcie nie masz folderu z komponentami, utwórz go, klikając prawym przyciskiem folder
app/
, a następnie Nowy > Folder > Folder komponentów. - Utwórz podfolder w folderze z zasobami, który będzie zawierać pliki modelu.
- Skopiuj pliki
model.tflite
,dict.txt
imanifest.json
do podfolderu (wszystkie 3 pliki muszą znajdować się w tym samym folderze).
- Jeśli w projekcie nie masz folderu z komponentami, utwórz go, klikając prawym przyciskiem folder
Aby Gradle nie kompresował pliku modelu podczas kompilowania aplikacji, dodaj do pliku
build.gradle
aplikacji te informacje:android { // ... aaptOptions { noCompress "tflite" } }
Plik modelu zostanie dodany do pakietu aplikacji i będzie dostępny dla ML Kit jako zasób nieprzetworzony.
Utwórz obiekt
LocalModel
, podając ścieżkę do pliku manifestu modelu:Java
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();
Kotlin
val localModel = LocalModel.Builder() .setAssetManifestFilePath("manifest.json") // or .setAbsoluteManifestFilePath(absolute file path to manifest file) .build()
Konfigurowanie źródła modelu hostowanego w Firebase
Aby użyć modelu hostowanego zdalnie, utwórz obiekt CustomRemoteModel
, podając nazwę przypisaną do modelu podczas jego publikowania:
Java
// Specify the name you assigned in the Firebase console.
FirebaseModelSource firebaseModelSource =
new FirebaseModelSource.Builder("your_model_name").build();
CustomRemoteModel remoteModel =
new CustomRemoteModel.Builder(firebaseModelSource).build();
Kotlin
// Specify the name you assigned in the Firebase console.
val firebaseModelSource = FirebaseModelSource.Builder("your_model_name")
.build()
val remoteModel = CustomRemoteModel.Builder(firebaseModelSource).build()
Następnie uruchom zadanie pobierania modelu, określając warunki, na jakich chcesz zezwolić na pobieranie. Jeśli model nie jest dostępny na urządzeniu lub jest dostępna nowsza wersja modelu, zadanie pobiera go asynchronicznie z Firebase:
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder()
.requireWifi()
.build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin
val downloadConditions = DownloadConditions.Builder()
.requireWifi()
.build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener {
// Success.
}
Wiele aplikacji inicjuje zadanie pobierania w kodzie inicjującym, ale możesz to zrobić w dowolnym momencie, zanim zaczniesz używać modelu.
Tworzenie etykiet obrazów na podstawie modelu
Po skonfigurowaniu źródeł modelu utwórz obiekt ImageLabeler
na podstawie jednego z nich.
Jeśli masz tylko model zainstalowany lokalnie, utwórz etykietownik na podstawie obiektu CustomImageLabelerOptions
i skonfiguruj próg poziomu ufności, który chcesz wymagać (patrz Ocenianie modelu):
Java
CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);
Kotlin
val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)
Jeśli model jest hostowany zdalnie, przed jego uruchomieniem musisz sprawdzić, czy został pobrany. Stan zadania pobierania modelu możesz sprawdzić, korzystając z metody isModelDownloaded()
menedżera modeli.
Musisz to potwierdzić tylko przed uruchomieniem etykietowania, ale jeśli masz model hostowany zdalnie i model w pakiecie lokalnym, warto wykonać tę weryfikację podczas tworzenia etykietowania obrazu: utwórz etykietowanie z modelu zdalnego, jeśli został pobrany, a w przeciwnym razie z modelu lokalnego.
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
CustomImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
}
CustomImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate threshold.
.build();
ImageLabeler labeler = ImageLabeling.getClient(options);
}
});
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
CustomImageLabelerOptions.Builder(remoteModel)
} else {
CustomImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Cloud console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = ImageLabeling.getClient(options)
}
Jeśli masz tylko model hostowany zdalnie, wyłącz funkcje związane z modelem (np. wygaszaj lub ukryj część interfejsu użytkownika), dopóki nie potwierdzisz, że model został pobrany. Możesz to zrobić, dołączając listenera do metody download()
menedżera modelu:
Java
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. Przygotuj obraz wejściowy
Następnie dla każdego obrazu, który chcesz otagować, utwórz obiekt InputImage
. Narzędzie do etykietowania obrazów działa najszybciej, gdy używasz formatu Bitmap
lub, jeśli używasz interfejsu camera2 API, YUV_420_888 media.Image
, co jest zalecane, gdy to możliwe.
Możesz utworzyć InputImage
z różnych źródeł. Każde z nich opisane jest poniżej.
Korzystanie z media.Image
Aby utworzyć obiekt InputImage
na podstawie obiektu media.Image
, na przykład podczas robienia zdjęcia aparatem urządzenia, przekaż obiekt media.Image
i obrót obrazu do obiektu InputImage.fromMediaImage()
.
Jeśli używasz biblioteki
CameraX, klasy OnImageCapturedListener
i
ImageAnalysis.Analyzer
obliczają wartość obrotu za Ciebie.
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy?) { val mediaImage = imageProxy?.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees); // Pass image to an ML Kit Vision API // ... } }
Jeśli nie używasz biblioteki aparatu, która podaje stopień obrotu obrazu, możesz go obliczyć na podstawie stopnia obrotu urządzenia i orientacji czujnika aparatu na urządzeniu:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Następnie prześlij obiekt media.Image
i wartość stopnia obrotu do InputImage.fromMediaImage()
:
Kotlin+KTX
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Korzystanie z identyfikatora URI pliku
Aby utworzyć obiekt InputImage
z identyfikatora URI pliku, prześlij kontekst aplikacji i identyfikator URI pliku do funkcji InputImage.fromFilePath()
. Jest to przydatne, gdy używasz intencji ACTION_GET_CONTENT
, aby poprosić użytkownika o wybranie obrazu z aplikacji Galeria.
Kotlin+KTX
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Używanie ByteBuffer
lub ByteArray
Aby utworzyć obiekt InputImage
z elementu ByteBuffer
lub ByteArray
, najpierw oblicz stopień obrotu obrazu w sposób opisany wcześniej w przypadku danych wejściowych media.Image
.
Następnie utwórz obiekt InputImage
z buforem lub tablicą, a także wysokość, szerokość, format kodowania kolorów i stopień obrotu obrazu:
Kotlin+KTX
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Korzystanie z Bitmap
Aby utworzyć obiekt InputImage
z obiektu Bitmap
, zastosuj tę deklarację:
Kotlin+KTX
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Obraz jest reprezentowany przez obiekt Bitmap
z stopniami obrotu.
3. Uruchom narzędzie do etykietowania obrazów
Aby dodać etykiety do obiektów na obrazie, przekaż obiekt image
do metody process()
obiektu ImageLabeler
.
Java
labeler.process(image)
.addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
@Override
public void onSuccess(List<ImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin
labeler.process(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
4. Uzyskiwanie informacji o oznaczonych obiektach
Jeśli operacja etykietowania obrazu się powiedzie, do odbiorcy sukcesu zostanie przekazana lista obiektów ImageLabel
. Każdy obiekt ImageLabel
reprezentuje coś, co zostało oznaczone na obrazie. Możesz uzyskać opis tekstowy każdej etykiety, wskaźnik ufności dopasowania oraz indeks dopasowania.
Przykład:
Java
for (ImageLabel label : labels) {
String text = label.getText();
float confidence = label.getConfidence();
int index = label.getIndex();
}
Kotlin
for (label in labels) {
val text = label.text
val confidence = label.confidence
val index = label.index
}
Wskazówki dotyczące zwiększania skuteczności w czasie rzeczywistym
Jeśli chcesz oznaczać obrazy w aplikacji w czasie rzeczywistym, postępuj zgodnie z tymi wskazówkami, aby uzyskać najlepszą liczbę klatek na sekundę:
- Ogranicz wywołania do etykietowania obrazów. Jeśli podczas działania etykietowania obrazu pojawi się nowa klatka wideo, odrzuć ją. Przykładem jest klasa
VisionProcessorBase
w przykładowej aplikacji krótkiego wprowadzenia. - Jeśli używasz danych wyjściowych etykietowania obrazu do nakładania grafiki na obraz wejściowy, najpierw uzyskaj wynik, a następnie renderuj obraz i nałóż go w jednym kroku. W ten sposób renderujesz na powierzchni wyświetlacza tylko raz w przypadku każdej ramki wejściowej. Aby zobaczyć przykład, otwórz klasy
CameraSourcePreview
iGraphicOverlay
w przykładowej aplikacji krótkiego wprowadzenia. -
Jeśli używasz interfejsu Camera2 API, rób zdjęcia w formacie
ImageFormat.YUV_420_888
.Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w formacie
ImageFormat.NV21
.