זיהוי ציוני דרך באמצעות למידת מכונה ב-Firebase ל-Android

אפשר להשתמש ב-Firebase ML כדי לזהות ציוני דרך ידועים בתמונה.

לפני שמתחילים

  1. אם עדיין לא עשיתם זאת, מוסיפים את Firebase לפרויקט Android.
  2. בקובץ Gradle של המודול (ברמת האפליקציה) (בדרך כלל <project>/<app-module>/build.gradle.kts או <project>/<app-module>/build.gradle), מוסיפים את התלות בספריית Vision Firebase ML ל-Android. מומלץ להשתמש Firebase Android BoM כדי לשלוט בניהול גרסאות של ספריות.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:33.2.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    באמצעות Firebase Android BoM, האפליקציה שלכם תשתמש תמיד בגרסאות תואמות של ספריות Android של Firebase.

    (חלופה)  מוסיפים יחסי תלות לספריות של Firebase בלי להשתמש ב-BoM

    אם בוחרים לא להשתמש ב-Firebase BoM, צריך לציין את כל הגרסאות של ספריות Firebase בשורת התלות שלהן.

    שימו לב: אם האפליקציה שלכם משתמשת במספר ספריות של Firebase, מומלץ מומלץ להשתמש בפקודה BoM כדי לנהל גרסאות של ספריות, וכך להבטיח שכל הגרסאות תואמת.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    מחפשים מודול ספרייה ספציפי ל-Kotlin? מתחיל בעוד אוקטובר 2023 (Firebase BoM 32.5.0), גם מפתחי Kotlin וגם מפתחי Java יכולים תלויות במודול הספרייה הראשי (לקבלת פרטים נוספים, אפשר לעיין שאלות נפוצות על היוזמה).
  3. אם עדיין לא הפעלתם ממשקי API מבוססי-Cloud בפרויקט, עליכם לעשות זאת עכשיו:

    1. פותחים את דף ממשקי ה-API של Firebase ML במסוף Firebase.
    2. אם עדיין לא שדרגתם את הפרויקט לתוכנית התמחור Blaze, לוחצים על שדרוג כדי לעשות זאת. (הבקשה לשדרוג תוצג רק אם הפרויקט לא נמצא בתוכנית Blaze).

      רק בפרויקטים ברמת Blaze אפשר להשתמש בממשקי API מבוססי-ענן.

    3. אם ממשקי API מבוססי-ענן עדיין לא מופעלים, לוחצים על הפעלת ממשקי API מבוססי-ענן. ממשקי API.

הגדרת המזהה של ציון הדרך

כברירת מחדל, הגלאי של Cloud משתמש בגרסה STABLE של המודל ומחזיר עד 10 תוצאות. אם אתם רוצים לשנות את אחת מהאפשרויות האלה את ההגדרות, לציין אותן באמצעות FirebaseVisionCloudDetectorOptions לאובייקט.

לדוגמה, כדי לשנות את שתי הגדרות ברירת המחדל, יוצרים אובייקט FirebaseVisionCloudDetectorOptions כמו בדוגמה הבאה:

Kotlin+KTX

val options = FirebaseVisionCloudDetectorOptions.Builder()
    .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
    .setMaxResults(15)
    .build()

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

כדי להשתמש בהגדרות ברירת המחדל, תוכלו להשתמש ב-FirebaseVisionCloudDetectorOptions.DEFAULT בשלב הבא.

הפעלת המזהה של ציון הדרך

כדי לזהות ציוני דרך בתמונה, צריך ליצור אובייקט FirebaseVisionImage מ-Bitmap, media.Image, ByteBuffer, ממערך בייטים או מקובץ במכשיר. לאחר מכן מעבירים את האובייקט FirebaseVisionImage אל השיטה detectInImage של FirebaseVisionCloudLandmarkDetector.

  1. יוצרים אובייקט FirebaseVisionImage מהתמונה.

    • כדי ליצור אובייקט FirebaseVisionImage מתוך media.Image אובייקט, למשל בזמן צילום תמונה מתוך של המכשיר, מעבירים את האובייקט media.Image ל-FirebaseVisionImage.fromMediaImage().

      אם משתמשים ספריית CameraX, OnImageCapturedListener ImageAnalysis.Analyzer מחלקות מחשבים את ערך הסבב עבורך, אז צריך רק להמיר את הסבבFirebase ML ROTATION_ קבועים לפני קריאה FirebaseVisionImage.fromMediaImage():

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }

      אם לא משתמשים בספריית מצלמה שמאפשרת סיבוב תמונה, הוא יכול לחשב אותו על סמך סיבוב המכשיר וכיוון המצלמה החיישן במכשיר:

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      לאחר מכן, מעבירים את האובייקט media.Image ל-FirebaseVisionImage.fromMediaImage():

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • כדי ליצור אובייקט FirebaseVisionImage מ-URI של קובץ, מעבירים את ההקשר של האפליקציה ואת ה-URI של הקובץ FirebaseVisionImage.fromFilePath(). זה שימושי כאשר משתמשים ב-Intent ACTION_GET_CONTENT כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה.

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • כדי ליצור אובייקט FirebaseVisionImage מתוך ByteBuffer או מערך בייטים, מחשבים קודם את התמונה של סיבוב הנתונים כפי שמתואר למעלה עבור קלט media.Image.

      לאחר מכן, יוצרים אובייקט FirebaseVisionImageMetadata שמכיל את הגובה, הרוחב, פורמט קידוד הצבע של התמונה וסבב:

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      משתמשים במאגר הנתונים הזמני או במערך ובאובייקט המטא-נתונים כדי ליצור אובייקט FirebaseVisionImage:

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • כדי ליצור אובייקט FirebaseVisionImage מתוך אובייקט Bitmap:

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      התמונה שמיוצגת על ידי האובייקט Bitmap חייבת להיות זקוף, ללא צורך בסיבוב נוסף.

  2. מקבלים מופע של FirebaseVisionCloudLandmarkDetector:

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
        .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);
  3. לבסוף, מעבירים את התמונה ל-method detectInImage:

    Kotlin+KTX

    val result = detector.detectInImage(image)
        .addOnSuccessListener { firebaseVisionCloudLandmarks ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

קבלת מידע על ציוני הדרך שזוהו

אם פעולת ההכרה של ציון דרך תתבצע בהצלחה, רשימה של אובייקטים של FirebaseVisionCloudLandmark יועברו למגש ההאזנה להצלחה. כל אחד אובייקט FirebaseVisionCloudLandmark מייצג ציון דרך שזוהה תמונה. לכל מאפיין של ARIA אפשר לקבל את הקואורדינטות התוחמות שלו בתמונת הקלט, שם ציון הדרך, קו הרוחב וקו האורך שלו, מזהה הישות ב-Knowledge Graph (אם זמין), ואת רמת הסמך של ההתאמה. לדוגמה:

Kotlin+KTX

for (landmark in firebaseVisionCloudLandmarks) {
    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

השלבים הבאים