Vektör işlevleri

Vektör İşlevleri

Ad Açıklama
COSINE_DISTANCE İki vektör arasındaki kosinüs uzaklığını döndürür.
DOT_PRODUCT İki vektör arasındaki iç çarpımı döndürür.
EUCLIDEAN_DISTANCE İki vektör arasındaki Öklid uzaklığını döndürür.
MANHATTAN_DISTANCE İki vektör arasındaki Manhattan mesafesini döndürür.
VECTOR_LENGTH Bir vektördeki öğe sayısını döndürür.

COSINE_DISTANCE

Söz dizimi:

cosine_distance(x: VECTOR, y: VECTOR) -> FLOAT64

Açıklama:

x ile y arasındaki kosinüs uzaklığını döndürür.

Web

const sampleVector = [0.0, 1, 2, 3, 4, 5];
const result = await execute(db.pipeline()
  .collection("books")
  .select(
    field("embedding").cosineDistance(sampleVector).as("cosineDistance")));
Swift
let sampleVector = [0.0, 1, 2, 3, 4, 5]
let result = try await db.pipeline()
  .collection("books")
  .select([
    Field("embedding").cosineDistance(sampleVector).as("cosineDistance")
  ])
  .execute()

Kotlin

val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0)
val result = db.pipeline()
    .collection("books")
    .select(
        field("embedding").cosineDistance(sampleVector).alias("cosineDistance")
    )
    .execute()

Java

double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(
        field("embedding").cosineDistance(sampleVector).alias("cosineDistance")
    )
    .execute();
Python
from google.cloud.firestore_v1.pipeline_expressions import Field
from google.cloud.firestore_v1.vector import Vector

sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
result = (
    client.pipeline()
    .collection("books")
    .select(
        Field.of("embedding").cosine_distance(sample_vector).as_("cosineDistance")
    )
    .execute()
)

DOT_PRODUCT

Söz dizimi:

dot_product(x: VECTOR, y: VECTOR) -> FLOAT64

Açıklama:

x ve y'nin nokta çarpımını döndürür.

Web

const sampleVector = [0.0, 1, 2, 3, 4, 5];
const result = await execute(db.pipeline()
  .collection("books")
  .select(
    field("embedding").dotProduct(sampleVector).as("dotProduct")
  )
);
Swift
let sampleVector = [0.0, 1, 2, 3, 4, 5]
let result = try await db.pipeline()
  .collection("books")
  .select([
    Field("embedding").dotProduct(sampleVector).as("dotProduct")
  ])
  .execute()

Kotlin

val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0)
val result = db.pipeline()
    .collection("books")
    .select(
        field("embedding").dotProduct(sampleVector).alias("dotProduct")
    )
    .execute()

Java

double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(
        field("embedding").dotProduct(sampleVector).alias("dotProduct")
    )
    .execute();
Python
from google.cloud.firestore_v1.pipeline_expressions import Field
from google.cloud.firestore_v1.vector import Vector

sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("embedding").dot_product(sample_vector).as_("dotProduct"))
    .execute()
)

EUCLIDEAN_DISTANCE

Söz dizimi:

euclidean_distance(x: VECTOR, y: VECTOR) -> FLOAT64

Açıklama:

x ile y arasındaki Öklid uzaklığını hesaplar.

Web

const sampleVector = [0.0, 1, 2, 3, 4, 5];
const result = await execute(db.pipeline()
  .collection("books")
  .select(
    field("embedding").euclideanDistance(sampleVector).as("euclideanDistance")
  )
);
Swift
let sampleVector = [0.0, 1, 2, 3, 4, 5]
let result = try await db.pipeline()
  .collection("books")
  .select([
    Field("embedding").euclideanDistance(sampleVector).as("euclideanDistance")
  ])
  .execute()

Kotlin

val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0)
val result = db.pipeline()
    .collection("books")
    .select(
        field("embedding").euclideanDistance(sampleVector).alias("euclideanDistance")
    )
    .execute()

Java

double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(
        field("embedding").euclideanDistance(sampleVector).alias("euclideanDistance")
    )
    .execute();
Python
from google.cloud.firestore_v1.pipeline_expressions import Field
from google.cloud.firestore_v1.vector import Vector

sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
result = (
    client.pipeline()
    .collection("books")
    .select(
        Field.of("embedding")
        .euclidean_distance(sample_vector)
        .as_("euclideanDistance")
    )
    .execute()
)

MANHATTAN_DISTANCE

Söz dizimi:

manhattan_distance(x: VECTOR, y: VECTOR) -> FLOAT64

Açıklama:

x ile y arasındaki Manhattan uzaklığını hesaplar.

VECTOR_LENGTH

Söz dizimi:

vector_length(vector: VECTOR) -> INT64

Açıklama:

Bir VECTOR içindeki öğe sayısını döndürür.

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(
    field("embedding").vectorLength().as("vectorLength")
  )
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([
    Field("embedding").vectorLength().as("vectorLength")
  ])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(
        field("embedding").vectorLength().alias("vectorLength")
    )
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(
        field("embedding").vectorLength().alias("vectorLength")
    )
    .execute();
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("embedding").vector_length().as_("vectorLength"))
    .execute()
)