Görüntüde tanınan nesneleri etiketlemek için ML Kit'i kullanabilirsiniz: cihaz üzerinde model veya bulut modeli. Bkz. genel bakış ile ele alacağız.
Başlamadan önce
- Henüz yapmadıysanız Firebase'i Android projenize ekleyin.
- Modülünüze ML Kit Android kitaplıkları için bağımlılıkları ekleyin
(uygulama düzeyinde) Gradle dosyası (genellikle
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1' }
-
İsteğe bağlı ancak önerilir: Cihaz üzerinde API'yi kullanıyorsanız
uygulamanız sonrasında ML modelini cihaza otomatik olarak
Google Play Store'dan yüklenir.
Bunu yapmak için aşağıdaki beyanı uygulamanızın
AndroidManifest.xml
dosyası: Yükleme zamanı modeli indirmelerini etkinleştirmezseniz model ilk kez çalıştırıldığında indirilmiş olan telefon numarasıdır. Yaptığınız istekler olmadan hiçbir sonuç döndürmez.<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="label" /> <!-- To use multiple models: android:value="label,model2,model3" --> </application>
-
Bulut tabanlı modeli kullanmak istiyorsanız ve henüz etkinleştirmediyseniz bulut tabanlı API'ler kullanmak için aşağıdaki adımları uygulayın:
- ML Kit'i açın Firebase konsolunun API'ler sayfasında gösterilir.
-
Projenizi daha önce Blaze fiyatlandırma planına yükseltmediyseniz Bunun için yeni sürüme geçin. (Yalnızca emin olun.)
Bulut tabanlı API'ler yalnızca Blaze düzeyindeki projelerde kullanılabilir.
- Cloud tabanlı API'ler henüz etkinleştirilmemişse Bulut tabanlı API'leri etkinleştir'i tıklayın. API'ler.
Yalnızca cihaz üzerindeki modeli kullanmak istiyorsanız bu adımı atlayabilirsiniz.
Artık cihaz üzerindeki bir modeli veya daha fazla.
1. Giriş resmini hazırlama
Resminizden birFirebaseVisionImage
nesnesi oluşturun.
Görüntü etiketleyici, Bitmap
kullandığınızda veya
Camera2 API'sının JPEG biçiminde bir media.Image
olması gerekir. Bu API'nin
yapmasını sağlar.
-
Bir
FirebaseVisionImage
nesnesi oluşturmak içinmedia.Image
nesnesi, örneğin birmedia.Image
nesnesini ve görüntününFirebaseVisionImage.fromMediaImage()
değerine döndürülüyor.URL'yi CameraX kitaplığı,
OnImageCapturedListener
veImageAnalysis.Analyzer
sınıfları rotasyon değerini hesaplar gerekir, bu nedenle rotasyonu ML Kit'lerinden birine veya Çağrıdan önceROTATION_
sabit değerFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Resmin döndürmesini sağlayan bir kamera kitaplığı kullanmıyorsanız cihazın dönüşüne ve kameranın yönüne göre hesaplanabilir cihazdaki sensör:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Ardından,
media.Image
nesnesini ve rotasyon değeriniFirebaseVisionImage.fromMediaImage()
değerine ayarlayın:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Dosya URI'sinden bir
FirebaseVisionImage
nesnesi oluşturmak için uygulama bağlamını ve dosya URI'siniFirebaseVisionImage.fromFilePath()
. Bu özellik, kullanıcıdan seçim yapmasını istemek için birACTION_GET_CONTENT
niyeti kullanın galeri uygulamasından bir resim.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Bir
FirebaseVisionImage
nesnesi oluşturmak içinByteBuffer
veya bir bayt dizisi, önce görüntüyü hesaplayınmedia.Image
girişi için yukarıda açıklandığı gibi döndürülmesini sağlayın.Ardından, bir
FirebaseVisionImageMetadata
nesnesi oluşturun yüksekliğini, genişliğini, renk kodlaması biçimini ve ve rotasyon:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Aşağıdakini oluşturmak için arabelleği veya diziyi ve meta veri nesnesini kullanın:
FirebaseVisionImage
nesne:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Bir
FirebaseVisionImage
nesnesi oluşturmak içinBitmap
nesne:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
nesnesi tarafından temsil edilen resim, dik olmalıdır, ek döndürme gerekmez.
2. Görüntü etiketleyiciyi yapılandırma ve çalıştırma
Bir görüntüdeki nesneleri etiketlemek içinFirebaseVisionImage
nesnesini
FirebaseVisionImageLabeler
ürününün processImage
yöntemi.
İlk olarak, içe aktarılan
FirebaseVisionImageLabeler
.Cihaz üzerinde görüntü etiketleyiciyi kullanmak istiyorsanız:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getOnDeviceImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionOnDeviceImageLabelerOptions options = // new FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getOnDeviceImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
Bulut görüntüsü etiketleyiciyi kullanmak istiyorsanız:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
Ardından resmi
processImage()
yöntemine iletin:Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. Etiketli nesneler hakkında bilgi edinme
Görüntü etiketleme işlemi başarılı olursaFirebaseVisionImageLabel
nesne
yardımcı olmaktır. Her FirebaseVisionImageLabel
nesnesi bir şeyi temsil eder
bir kod bulun. Her etiket için etiketin metnini alabilirsiniz
açıklama,
Bilgi Grafiği varlık kimliği
(varsa) ve eşleşmenin güven puanı. Örneğin:
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
Kotlin+KTX
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları
Görüntüleri gerçek zamanlı bir uygulamada etiketlemek isterseniz şu talimatları uygulayın:
- Görüntü etiketleyiciye yapılan çağrıları kısıtlayın. Yeni bir video karesi resim etiketleyici çalışırken kullanılabilir, çerçeveyi bırakın.
- Grafikleri üzerine bindirmek için görüntü etiketleyicinin çıkışını kullanıyorsanız giriş görüntüsünü kullanın, önce ML Kit'ten sonucu alın ve ardından görüntüyü oluşturun tek bir adımda yapabilirsiniz. Bu şekilde, öğeleri ekran yüzeyinde her giriş karesi için yalnızca bir kez.
-
Camera2 API'sini kullanıyorsanız görüntüleri şurada yakalayın:
ImageFormat.YUV_420_888
biçimindedir.Eski Kamera API'sini kullanıyorsanız görüntüleri şurada yakalayın:
ImageFormat.NV21
biçimindedir.
Sonraki adımlar
- Cloud API kullanan bir uygulamanın üretim sürümüne dağıtım yapmadan önce şunları yapmanız gerekir: önlemek ve etkilerini azaltmak amacıyla neden olabileceğiyle ilgili daha fazla bilgi edinin.