Ir para o console

Reconhecer texto em imagens com o Kit de ML no iOS

É possível usar o kit de ML para reconhecimento de texto em imagens. Esse kit tem uma API de uso geral que reconhece texto em imagens, como o texto de uma placa de rua, e uma API otimizada para reconhecer texto de documentos. A API de uso geral tem modelos baseados no dispositivo e na nuvem. O reconhecimento de texto em documentos está disponível apenas como modelo baseado na nuvem. Consulte a visão geral para ver uma comparação entre esses dois tipos de modelos.

Consulte a amostra do guia de início rápido do kit de ML no GitHub para ver um exemplo de uso dessa API ou faça o codelab (ambos em inglês).

Antes de começar

  1. Se você ainda não adicionou o Firebase ao seu app, siga as etapas no guia de primeiros passos.
  2. Inclua as bibliotecas do Kit de ML no seu Podfile:
    pod 'Firebase/Analytics'
    pod 'Firebase/MLVision'
    # If using an on-device API:
    pod 'Firebase/MLVisionTextModel'
    
    Depois de instalar ou atualizar os pods do seu projeto, abra o projeto do Xcode usando o .xcworkspace.
  3. Importe o Firebase para seu app:

    Swift

    import Firebase

    Objective-C

    @import Firebase;
  4. Se você quiser usar o modelo baseado em nuvem e ainda não tiver ativado as APIs baseadas em nuvem para seu projeto, siga estas etapas:

    1. Abra a página APIs do Kit de ML no Console do Firebase.
    2. Se você ainda não fez o upgrade do seu projeto para um plano Blaze, clique em Fazer upgrade. Você verá uma solicitação para atualizar somente se o seu projeto não estiver no plano Blaze.

      Apenas projetos no nível Blaze podem usar APIs baseadas na nuvem.

    3. Caso as APIs baseadas na nuvem ainda não estejam ativadas, clique em Ativar APIs baseadas na nuvem.

    Se você quiser usar apenas o modelo no dispositivo, pule esta etapa.

Agora você já pode reconhecer texto em imagens.

Diretrizes de imagem de entrada

  • Para que o kit de ML reconheça o texto com precisão, as imagens de entrada devem conter texto representado por dados de pixel suficientes. Idealmente, para texto em latim, cada caractere deve ter pelo menos 16x16 pixels. Para texto em chinês, japonês e coreano (compatíveis apenas com APIs baseadas em nuvem), cada caractere deve ter 24x24 pixels. Para todos os idiomas, geralmente não há melhorias de precisão em usar caracteres maiores que 24x24 pixels.

    Por exemplo, uma imagem de 640x480 pixels pode funcionar para digitalizar um cartão de visita que ocupe toda a largura da imagem. Para digitalizar um documento impresso em papel de tamanho carta, talvez seja necessária uma imagem de 720x1280 pixels.

  • O foco inadequado da imagem pode prejudicar a precisão do reconhecimento de texto. Se você não está conseguindo resultados aceitáveis, peça para o usuário recapturar a imagem.

  • Se você estiver fazendo reconhecimento de texto em um aplicativo em tempo real, considere as dimensões gerais das imagens de entrada. Já que imagens menores podem ser processadas mais rapidamente, para reduzir a latência, capture imagens em resoluções mais baixas (tendo em mente os requisitos de precisão acima) e certifique-se de que o texto ocupe o máximo possível da imagem. Consulte também Dicas para melhorar o desempenho em tempo real.


Reconhecer texto em imagens

Para reconhecer texto em imagens usando o modelo baseado no dispositivo ou na nuvem, execute o reconhecedor de texto conforme descrito nas etapas a seguir.

1. Executar o reconhecedor de texto

Passe a imagem como UIImage ou CMSampleBufferRef para o método process(_:completion:) de VisionTextRecognizer:

  1. Consiga uma instância de VisionTextRecognizer chamando onDeviceTextRecognizer ou cloudTextRecognizer:

    Swift

    Para usar o modelo no dispositivo:

    let vision = Vision.vision()
    let textRecognizer = vision.onDeviceTextRecognizer()
    

    Para usar o modelo de nuvem:

    let vision = Vision.vision()
    let textRecognizer = vision.cloudTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudTextRecognizer(options: options)
    

    Objective-C

    Para usar o modelo no dispositivo:

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision onDeviceTextRecognizer];
    

    Para usar o modelo de nuvem:

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudTextRecognizerOptions *options =
            [[FIRVisionCloudTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
    
  2. Crie um objeto VisionImage usando UIImage ou CMSampleBufferRef.

    Para usar uma UIImage:

    1. Se necessário, gire a imagem para que a propriedade imageOrientation seja definida como .up.
    2. Crie um objeto VisionImage usando a UIImage girada corretamente. Não especifique nenhum metadado de rotação. É preciso usar o valor padrão .topLeft.

      Swift

      let image = VisionImage(image: uiImage)

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    Para usar uma CMSampleBufferRef:

    1. Crie um objeto VisionImageMetadata que especifique a orientação dos dados de imagem contidos no buffer CMSampleBufferRef.

      Para ver a orientação da imagem:

      Swift

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      Objective-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      Em seguida, crie o objeto de metadados:

      Swift

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      Objective-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. Crie um objeto VisionImage usando o CMSampleBufferRef e os metadados de rotação:

      Swift

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. Em seguida, passe a imagem para o método process(_:completion:):

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }
    

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
      // Recognized text
    }];
    

2. Extrair texto de blocos de texto reconhecido

Se a operação de reconhecimento de texto for bem-sucedida, ela retornará um objeto VisionText. Um objeto VisionText contém o texto completo reconhecido na imagem e zero ou mais objetos VisionTextBlock.

Cada VisionTextBlock representa um bloco retangular de texto, que contém zero ou mais objetos VisionTextLine. Cada objeto VisionTextLine contém zero ou mais objetos VisionTextElement, que representam palavras e entidades semelhantes a palavras (datas, números e assim por diante).

Para cada VisionTextBlock, VisionTextLine e VisionTextElement, você pode obter o texto reconhecido na região e nas coordenadas limitantes da região.

Exemplo:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockLanguages = block.recognizedLanguages
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for line in block.lines {
        let lineText = line.text
        let lineConfidence = line.confidence
        let lineLanguages = line.recognizedLanguages
        let lineCornerPoints = line.cornerPoints
        let lineFrame = line.frame
        for element in line.elements {
            let elementText = element.text
            let elementConfidence = element.confidence
            let elementLanguages = element.recognizedLanguages
            let elementCornerPoints = element.cornerPoints
            let elementFrame = element.frame
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages;
  NSArray<NSValue *> *blockCornerPoints = block.cornerPoints;
  CGRect blockFrame = block.frame;
  for (FIRVisionTextLine *line in block.lines) {
    NSString *lineText = line.text;
    NSNumber *lineConfidence = line.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages;
    NSArray<NSValue *> *lineCornerPoints = line.cornerPoints;
    CGRect lineFrame = line.frame;
    for (FIRVisionTextElement *element in line.elements) {
      NSString *elementText = element.text;
      NSNumber *elementConfidence = element.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages;
      NSArray<NSValue *> *elementCornerPoints = element.cornerPoints;
      CGRect elementFrame = element.frame;
    }
  }
}

Dicas para melhorar o desempenho em tempo real

Se você quiser usar o modelo no dispositivo para reconhecer texto em um aplicativo em tempo real, siga estas diretrizes para conseguir os melhores frame rates:

  • Limite as chamadas ao reconhecedor de texto. Se um novo frame de vídeo se tornar disponível durante a execução do reconhecedor de texto, descarte esse frame.
  • Capture imagens em uma resolução menor. No entanto, lembre-se também dos requisitos de dimensão de imagem da API.

Reconhecer texto em imagens de documentos

Para reconhecer o texto de um documento, configure e execute o documento baseado na nuvem conforme descrito nas instruções abaixo.

A API de reconhecimento de texto em documentos descrita abaixo tem uma interface desenvolvida para trabalhar com imagens de documentos. No entanto, se você preferir a interface fornecida pela API de texto em imagem, poderá usá-la para digitalizar documentos. Para fazer isso, basta configurar o reconhecedor de texto em nuvem para usar o modelo de texto denso.

Para usar a API de reconhecimento de texto em documentos, siga estas etapas:

1. Executar o reconhecedor de texto

Passe a imagem como UIImage ou CMSampleBufferRef para o método process(_:completion:) de VisionDocumentTextRecognizer:

  1. Consiga uma instância de VisionDocumentTextRecognizer chamando cloudDocumentTextRecognizer:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudDocumentTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudDocumentTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)
    

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudDocumentTextRecognizerOptions *options =
            [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
    
  2. Crie um objeto VisionImage usando UIImage ou CMSampleBufferRef.

    Para usar uma UIImage:

    1. Se necessário, gire a imagem para que a propriedade imageOrientation seja definida como .up.
    2. Crie um objeto VisionImage usando a UIImage girada corretamente. Não especifique nenhum metadado de rotação. É preciso usar o valor padrão .topLeft.

      Swift

      let image = VisionImage(image: uiImage)

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    Para usar uma CMSampleBufferRef:

    1. Crie um objeto VisionImageMetadata que especifique a orientação dos dados de imagem contidos no buffer CMSampleBufferRef.

      Para ver a orientação da imagem:

      Swift

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      Objective-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      Em seguida, crie o objeto de metadados:

      Swift

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      Objective-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. Crie um objeto VisionImage usando o CMSampleBufferRef e os metadados de rotação:

      Swift

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. Em seguida, passe a imagem para o método process(_:completion:):

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }
    

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionDocumentText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
        // Recognized text
    }];
    

2. Extrair texto de blocos de texto reconhecido

Se a operação de reconhecimento de texto for bem-sucedida, ela retornará um objeto VisionDocumentText. Um objeto VisionDocumentText contém o texto completo reconhecido na imagem e uma hierarquia de objetos que refletem a estrutura do documento reconhecido:

Para cada objeto VisionDocumentTextBlock, VisionDocumentTextParagraph, VisionDocumentTextWord e VisionDocumentTextSymbol, você pode ter o texto reconhecido na região e nas coordenadas delimitadoras da região.

Exemplo:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockRecognizedLanguages = block.recognizedLanguages
    let blockBreak = block.recognizedBreak
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for paragraph in block.paragraphs {
        let paragraphText = paragraph.text
        let paragraphConfidence = paragraph.confidence
        let paragraphRecognizedLanguages = paragraph.recognizedLanguages
        let paragraphBreak = paragraph.recognizedBreak
        let paragraphCornerPoints = paragraph.cornerPoints
        let paragraphFrame = paragraph.frame
        for word in paragraph.words {
            let wordText = word.text
            let wordConfidence = word.confidence
            let wordRecognizedLanguages = word.recognizedLanguages
            let wordBreak = word.recognizedBreak
            let wordCornerPoints = word.cornerPoints
            let wordFrame = word.frame
            for symbol in word.symbols {
                let symbolText = symbol.text
                let symbolConfidence = symbol.confidence
                let symbolRecognizedLanguages = symbol.recognizedLanguages
                let symbolBreak = symbol.recognizedBreak
                let symbolCornerPoints = symbol.cornerPoints
                let symbolFrame = symbol.frame
            }
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionDocumentTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages;
  FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak;
  CGRect blockFrame = block.frame;
  for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) {
    NSString *paragraphText = paragraph.text;
    NSNumber *paragraphConfidence = paragraph.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages;
    FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak;
    CGRect paragraphFrame = paragraph.frame;
    for (FIRVisionDocumentTextWord *word in paragraph.words) {
      NSString *wordText = word.text;
      NSNumber *wordConfidence = word.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages;
      FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak;
      CGRect wordFrame = word.frame;
      for (FIRVisionDocumentTextSymbol *symbol in word.symbols) {
        NSString *symbolText = symbol.text;
        NSNumber *symbolConfidence = symbol.confidence;
        NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages;
        FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak;
        CGRect symbolFrame = symbol.frame;
      }
    }
  }
}

Próximas etapas

Antes de implantar em produção um aplicativo que usa uma API do Cloud, é preciso seguir mais algumas etapas para evitar e atenuar o efeito do acesso não autorizado à API.