Android'de Firebase ML ile Görüntüleri Etiketleyin

Bir görüntüde tanınan nesneleri etiketlemek için Firebase ML'yi kullanabilirsiniz. Bu API'nin özellikleri hakkında bilgi için genel bakışa bakın.

Sen başlamadan önce

  1. Henüz yapmadıysanız Android projenize Firebase'i ekleyin .
  2. Modülünüzde (uygulama düzeyinde) Gradle dosyanızda (genellikle <project>/<app-module>/build.gradle.kts veya <project>/<app-module>/build.gradle ), Firebase ML'nin bağımlılığını ekleyin Android için vizyon kütüphanesi. Kitaplık sürümlerini kontrol etmek için Firebase Android BoM'yi kullanmanızı öneririz.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:32.7.2"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }
    

    Firebase Android BoM'yi kullandığınızda uygulamanız her zaman Firebase Android kitaplıklarının uyumlu sürümlerini kullanır.

    (Alternatif) BoM'yi kullanmadan Firebase kitaplığı bağımlılıklarını ekleyin

    Firebase BoM'yi kullanmamayı tercih ederseniz her Firebase kitaplığı sürümünü bağımlılık satırında belirtmeniz gerekir.

    Uygulamanızda birden fazla Firebase kitaplığı kullanıyorsanız kitaplık sürümlerini yönetmek için tüm sürümlerin uyumlu olmasını sağlayan BoM'yi kullanmanızı önemle tavsiye ettiğimizi unutmayın.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    
    Kotlin'e özgü bir kütüphane modülü mü arıyorsunuz? Ekim 2023'ten itibaren (Firebase BoM 32.5.0) hem Kotlin hem de Java geliştiricileri ana kütüphane modülüne güvenebilecekler (ayrıntılar için bu girişimle ilgili SSS'ye bakın).
  3. Projeniz için Bulut tabanlı API'leri henüz etkinleştirmediyseniz şimdi yapın:

    1. Firebase konsolunun Firebase ML API'leri sayfasını açın.
    2. Projenizi henüz Blaze fiyatlandırma planına yükseltmediyseniz bunu yapmak için Yükselt'e tıklayın. (Yalnızca projeniz Blaze planında değilse yükseltme yapmanız istenecektir.)

      Yalnızca Blaze düzeyindeki projeler Bulut tabanlı API'leri kullanabilir.

    3. Bulut tabanlı API'ler henüz etkin değilse Bulut Tabanlı API'leri Etkinleştir'i tıklayın.

Artık görüntüleri etiketlemeye hazırsınız.

1. Giriş görüntüsünü hazırlayın

Görüntünüzden bir FirebaseVisionImage nesnesi oluşturun. Görüntü etiketleyici, bir Bitmap kullandığınızda veya kamera2 API'sini kullanıyorsanız JPEG formatlı bir media.Image kullandığınızda en hızlı şekilde çalışır; bunlar mümkün olduğunda önerilir.

  • Bir media.Image nesnesinden bir FirebaseVisionImage nesnesi oluşturmak için (örneğin, bir cihazın kamerasından bir görüntü yakalarken), media.Image nesnesini ve görüntünün dönüşünü FirebaseVisionImage.fromMediaImage() öğesine iletin.

    CameraX kitaplığını kullanırsanız OnImageCapturedListener ve ImageAnalysis.Analyzer sınıfları dönüş değerini sizin için hesaplar; dolayısıyla FirebaseVisionImage.fromMediaImage() öğesini çağırmadan önce dönüşü Firebase ML'nin ROTATION_ sabitlerinden birine dönüştürmeniz yeterlidir:

    Kotlin+KTX

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Vision API
                // ...
            }
        }
    }
    

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Vision API
            // ...
        }
    }
    

    Görüntünün dönüşünü sağlayan bir kamera kitaplığı kullanmıyorsanız, bunu cihazın dönüşünden ve cihazdaki kamera sensörünün yönünden hesaplayabilirsiniz:

    Kotlin+KTX

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Ardından media.Image nesnesini ve döndürme değerini FirebaseVisionImage.fromMediaImage() öğesine iletin:

    Kotlin+KTX

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
  • Bir dosya URI'sından FirebaseVisionImage nesnesi oluşturmak için uygulama içeriğini ve dosya URI'sini FirebaseVisionImage.fromFilePath() öğesine iletin. Kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için ACTION_GET_CONTENT amacını kullandığınızda bu kullanışlıdır.

    Kotlin+KTX

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }
  • ByteBuffer veya bayt dizisinden bir FirebaseVisionImage nesnesi oluşturmak için, öncelikle media.Image girişi için yukarıda açıklandığı gibi görüntü döndürmeyi hesaplayın.

    Ardından görüntünün yüksekliğini, genişliğini, renk kodlama biçimini ve dönüşünü içeren bir FirebaseVisionImageMetadata nesnesi oluşturun:

    Kotlin+KTX

    val metadata = FirebaseVisionImageMetadata.Builder()
        .setWidth(480) // 480x360 is typically sufficient for
        .setHeight(360) // image recognition
        .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
        .setRotation(rotation)
        .build()

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    FirebaseVisionImage nesnesi oluşturmak için tamponu veya diziyi ve meta veri nesnesini kullanın:

    Kotlin+KTX

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
  • Bir Bitmap nesnesinden FirebaseVisionImage nesnesi oluşturmak için:

    Kotlin+KTX

    val image = FirebaseVisionImage.fromBitmap(bitmap)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
    Bitmap nesnesi tarafından temsil edilen görüntü, ek bir döndürme gerekmeden dik olmalıdır.

2. Görüntü etiketleyiciyi yapılandırın ve çalıştırın

Bir görüntüdeki nesneleri etiketlemek için FirebaseVisionImage nesnesini FirebaseVisionImageLabeler processImage yöntemine iletin.

  1. Öncelikle FirebaseVisionImageLabeler örneğini alın.

    Kotlin+KTX

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

  2. Ardından görüntüyü processImage() yöntemine aktarın:

    Kotlin+KTX

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

3. Etiketli nesneler hakkında bilgi edinin

Görüntü etiketleme işlemi başarılı olursa FirebaseVisionImageLabel nesnelerinin bir listesi başarı dinleyicisine iletilecektir. Her FirebaseVisionImageLabel nesnesi, görüntüde etiketlenen bir şeyi temsil eder. Her etiket için etiketin metin açıklamasını, Bilgi Grafiği varlık kimliğini (varsa) ve eşleşmenin güven puanını alabilirsiniz. Örneğin:

Kotlin+KTX

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

Sonraki adımlar