Catch up on everything announced at Firebase Summit, and learn how Firebase can help you accelerate app development and run your app with confidence. Learn More

Bezpieczne rozpoznawanie tekstu na obrazach dzięki Cloud Vision przy użyciu uwierzytelniania i funkcji Firebase w systemie Android

Zadbaj o dobrą organizację dzięki kolekcji Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.

Aby wywołać interfejs Google Cloud API z aplikacji, musisz utworzyć pośredni interfejs API REST, który obsługuje autoryzację i chroni tajne wartości, takie jak klucze API. Następnie musisz napisać kod w swojej aplikacji mobilnej, aby uwierzytelnić się i komunikować z tą usługą pośredniczącą.

Jednym ze sposobów utworzenia tego interfejsu API REST jest użycie uwierzytelniania i funkcji Firebase, które zapewniają zarządzaną, bezserwerową bramę do interfejsów Google Cloud API, które obsługują uwierzytelnianie i które można wywoływać z aplikacji mobilnej za pomocą gotowych pakietów SDK.

W tym przewodniku pokazano, jak używać tej techniki do wywoływania interfejsu Cloud Vision API z aplikacji. Ta metoda umożliwi wszystkim uwierzytelnionym użytkownikom dostęp do rozliczanych usług Cloud Vision za pośrednictwem projektu Cloud, więc przed kontynuowaniem zastanów się, czy ten mechanizm uwierzytelniania jest wystarczający w Twoim przypadku użycia.

Zanim zaczniesz

Skonfiguruj swój projekt

  1. Jeśli jeszcze tego nie zrobiłeś, dodaj Firebase do swojego projektu na Androida .
  2. Jeśli nie masz jeszcze włączonych interfejsów API opartych na chmurze w swoim projekcie, zrób to teraz:

    1. Otwórz stronę Firebase ML APIs w konsoli Firebase.
    2. Jeśli Twój projekt nie został jeszcze uaktualniony do planu cenowego Blaze, kliknij Uaktualnij , aby to zrobić. (Zostaniesz poproszony o uaktualnienie tylko wtedy, gdy Twój projekt nie jest objęty planem Blaze).

      Tylko projekty na poziomie Blaze mogą korzystać z interfejsów API opartych na chmurze.

    3. Jeśli interfejsy API oparte na chmurze nie są jeszcze włączone, kliknij Włącz interfejsy API oparte na chmurze .
  3. Skonfiguruj swoje istniejące klucze Firebase API, aby zablokować dostęp do Cloud Vision API:
    1. Otwórz stronę Poświadczenia w konsoli Cloud.
    2. Dla każdego klucza API na liście otwórz widok do edycji i w sekcji Ograniczenia klucza dodaj do listy wszystkie dostępne interfejsy API z wyjątkiem Cloud Vision API.

Wdróż funkcję wywoływalną

Następnie wdróż funkcję Cloud Functions, której użyjesz do połączenia aplikacji z interfejsem Cloud Vision API. Repozytorium functions-samples zawiera przykład, którego możesz użyć.

Domyślnie dostęp do Cloud Vision API za pomocą tej funkcji umożliwi dostęp do Cloud Vision API tylko uwierzytelnionym użytkownikom Twojej aplikacji. Możesz modyfikować funkcję do różnych wymagań.

Aby wdrożyć funkcję:

  1. Sklonuj lub pobierz repozytorium functions-samples i przejdź do katalogu vision-annotate-image :
    git clone https://github.com/firebase/functions-samples
    cd vision-annotate-image
    
  2. Zainstaluj zależności:
    cd functions
    npm install
    cd ..
    
  3. Jeśli nie masz interfejsu wiersza polecenia Firebase, zainstaluj go .
  4. Zainicjuj projekt Firebase w katalogu vision-annotate-image . Po wyświetleniu monitu wybierz swój projekt z listy.
    firebase init
  5. Wdróż funkcję:
    firebase deploy --only functions:annotateImage

Dodaj uwierzytelnianie Firebase do swojej aplikacji

Wdrożona powyżej funkcja wywoływalna odrzuci wszelkie żądania od nieuwierzytelnionych użytkowników Twojej aplikacji. Jeśli jeszcze tego nie zrobiłeś, musisz dodać Firebase Auth do swojej aplikacji.

Dodaj niezbędne zależności do swojej aplikacji

  • Dodaj zależności dla bibliotek Firebase Functions i gson Android do pliku Gradle modułu (na poziomie aplikacji) (zwykle app/build.gradle):
    implementation 'com.google.firebase:firebase-functions:20.2.1'
    implementation 'com.google.code.gson:gson:2.8.6'
    
  • Teraz możesz zacząć rozpoznawać tekst na obrazach.

    1. Przygotuj obraz wejściowy

    Aby można było wywołać Cloud Vision, obraz musi być sformatowany jako ciąg znaków zakodowany w base64. Aby przetworzyć obraz z zapisanego identyfikatora URI pliku:
    1. Pobierz obraz jako obiekt Bitmap :

      Java

      Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);

      Kotlin+KTX

      var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
    2. Opcjonalnie zmniejsz obraz, aby zaoszczędzić na przepustowości. Zobacz zalecane rozmiary obrazów Cloud Vision.

      Java

      private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) {
          int originalWidth = bitmap.getWidth();
          int originalHeight = bitmap.getHeight();
          int resizedWidth = maxDimension;
          int resizedHeight = maxDimension;
      
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight);
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension;
              resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth);
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = maxDimension;
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false);
      }

      Kotlin+KTX

      private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap {
          val originalWidth = bitmap.width
          val originalHeight = bitmap.height
          var resizedWidth = maxDimension
          var resizedHeight = maxDimension
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension
              resizedWidth =
                      (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt()
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension
              resizedHeight =
                      (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt()
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension
              resizedWidth = maxDimension
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false)
      }

      Java

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640);

      Kotlin+KTX

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640)
    3. Przekonwertuj obiekt bitmapowy na ciąg zakodowany w base64:

      Java

      // Convert bitmap to base64 encoded string
      ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream);
      byte[] imageBytes = byteArrayOutputStream.toByteArray();
      String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);

      Kotlin+KTX

      // Convert bitmap to base64 encoded string
      val byteArrayOutputStream = ByteArrayOutputStream()
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream)
      val imageBytes: ByteArray = byteArrayOutputStream.toByteArray()
      val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)
    4. Obraz reprezentowany przez obiekt Bitmap musi być ustawiony pionowo, bez konieczności dodatkowego obracania.

    2. Wywołaj funkcję wywoływaną, aby rozpoznać tekst

    Aby rozpoznać tekst na obrazie, wywołaj funkcję możliwą do wywołania, przekazując żądanie JSON Cloud Vision .

    1. Najpierw zainicjuj instancję Cloud Functions:

      Java

      private FirebaseFunctions mFunctions;
      // ...
      mFunctions = FirebaseFunctions.getInstance();
      

      Kotlin+KTX

      private lateinit var functions: FirebaseFunctions
      // ...
      functions = Firebase.functions
      
    2. Zdefiniuj metodę wywoływania funkcji:

      Java

      private Task<JsonElement> annotateImage(String requestJson) {
          return mFunctions
                  .getHttpsCallable("annotateImage")
                  .call(requestJson)
                  .continueWith(new Continuation<HttpsCallableResult, JsonElement>() {
                      @Override
                      public JsonElement then(@NonNull Task<HttpsCallableResult> task) {
                          // This continuation runs on either success or failure, but if the task
                          // has failed then getResult() will throw an Exception which will be
                          // propagated down.
                          return JsonParser.parseString(new Gson().toJson(task.getResult().getData()));
                      }
                  });
      }
      

      Kotlin+KTX

      private fun annotateImage(requestJson: String): Task<JsonElement> {
          return functions
                  .getHttpsCallable("annotateImage")
                  .call(requestJson)
                  .continueWith { task ->
                      // This continuation runs on either success or failure, but if the task
                      // has failed then result will throw an Exception which will be
                      // propagated down.
                      val result = task.result?.data
                      JsonParser.parseString(Gson().toJson(result))
                  }
      }
      
    3. Utwórz żądanie JSON. Cloud Vision API obsługuje dwa typy wykrywania tekstu: TEXT_DETECTION i DOCUMENT_TEXT_DETECTION . Zobacz Cloud Vision OCR Docs , aby poznać różnicę między tymi dwoma przypadkami użycia.

      Java

      // Create json request to cloud vision
      JsonObject request = new JsonObject();
      // Add image to request
      JsonObject image = new JsonObject();
      image.add("content", new JsonPrimitive(base64encoded));
      request.add("image", image);
      //Add features to the request
      JsonObject feature = new JsonObject();
      feature.add("type", new JsonPrimitive("TEXT_DETECTION"));
      // Alternatively, for DOCUMENT_TEXT_DETECTION:
      //feature.add("type", new JsonPrimitive("DOCUMENT_TEXT_DETECTION"));
      JsonArray features = new JsonArray();
      features.add(feature);
      request.add("features", features);
      

      Kotlin+KTX

      // Create json request to cloud vision
      val request = JsonObject()
      // Add image to request
      val image = JsonObject()
      image.add("content", JsonPrimitive(base64encoded))
      request.add("image", image)
      //Add features to the request
      val feature = JsonObject()
      feature.add("type", JsonPrimitive("TEXT_DETECTION"))
      // Alternatively, for DOCUMENT_TEXT_DETECTION:
      // feature.add("type", JsonPrimitive("DOCUMENT_TEXT_DETECTION"))
      val features = JsonArray()
      features.add(feature)
      request.add("features", features)
      

      Opcjonalnie podaj wskazówki dotyczące języka , aby pomóc w wykrywaniu języka (zobacz obsługiwane języki ):

      Java

      JsonObject imageContext = new JsonObject();
      JsonArray languageHints = new JsonArray();
      languageHints.add("en");
      imageContext.add("languageHints", languageHints);
      request.add("imageContext", imageContext);
      

      Kotlin+KTX

      val imageContext = JsonObject()
      val languageHints = JsonArray()
      languageHints.add("en")
      imageContext.add("languageHints", languageHints)
      request.add("imageContext", imageContext)
      
    4. Na koniec wywołaj funkcję:

      Java

      annotateImage(request.toString())
              .addOnCompleteListener(new OnCompleteListener<JsonElement>() {
                  @Override
                  public void onComplete(@NonNull Task<JsonElement> task) {
                      if (!task.isSuccessful()) {
                          // Task failed with an exception
                          // ...
                      } else {
                          // Task completed successfully
                          // ...
                      }
                  }
              });
      

      Kotlin+KTX

      annotateImage(request.toString())
              .addOnCompleteListener { task ->
                  if (!task.isSuccessful) {
                      // Task failed with an exception
                      // ...
                  } else {
                      // Task completed successfully
                      // ...
                  }
              }
      

    3. Wyodrębnij tekst z bloków rozpoznanego tekstu

    Jeśli operacja rozpoznawania tekstu się powiedzie, w wyniku zadania zostanie zwrócona odpowiedź JSON BatchAnnotateImagesResponse . Adnotacje tekstowe można znaleźć w obiekcie fullTextAnnotation .

    Rozpoznany tekst można uzyskać jako ciąg w polu text . Na przykład:

    Java

    JsonObject annotation = task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("fullTextAnnotation").getAsJsonObject();
    System.out.format("%nComplete annotation:%n");
    System.out.format("%s%n", annotation.get("text").getAsString());
    

    Kotlin+KTX

    val annotation = task.result!!.asJsonArray[0].asJsonObject["fullTextAnnotation"].asJsonObject
    System.out.format("%nComplete annotation:")
    System.out.format("%n%s", annotation["text"].asString)
    

    Możesz także uzyskać informacje specyficzne dla regionów obrazu. Dla każdego block , paragraph , word i symbol można uzyskać tekst rozpoznawany w regionie oraz współrzędne graniczne regionu. Na przykład:

    Java

    for (JsonElement page : annotation.get("pages").getAsJsonArray()) {
        StringBuilder pageText = new StringBuilder();
        for (JsonElement block : page.getAsJsonObject().get("blocks").getAsJsonArray()) {
            StringBuilder blockText = new StringBuilder();
            for (JsonElement para : block.getAsJsonObject().get("paragraphs").getAsJsonArray()) {
                StringBuilder paraText = new StringBuilder();
                for (JsonElement word : para.getAsJsonObject().get("words").getAsJsonArray()) {
                    StringBuilder wordText = new StringBuilder();
                    for (JsonElement symbol : word.getAsJsonObject().get("symbols").getAsJsonArray()) {
                        wordText.append(symbol.getAsJsonObject().get("text").getAsString());
                        System.out.format("Symbol text: %s (confidence: %f)%n", symbol.getAsJsonObject().get("text").getAsString(), symbol.getAsJsonObject().get("confidence").getAsFloat());
                    }
                    System.out.format("Word text: %s (confidence: %f)%n%n", wordText.toString(), word.getAsJsonObject().get("confidence").getAsFloat());
                    System.out.format("Word bounding box: %s%n", word.getAsJsonObject().get("boundingBox"));
                    paraText.append(wordText.toString()).append(" ");
                }
                System.out.format("%nParagraph:%n%s%n", paraText);
                System.out.format("Paragraph bounding box: %s%n", para.getAsJsonObject().get("boundingBox"));
                System.out.format("Paragraph Confidence: %f%n", para.getAsJsonObject().get("confidence").getAsFloat());
                blockText.append(paraText);
            }
            pageText.append(blockText);
        }
    }
    

    Kotlin+KTX

    for (page in annotation["pages"].asJsonArray) {
        var pageText = ""
        for (block in page.asJsonObject["blocks"].asJsonArray) {
            var blockText = ""
            for (para in block.asJsonObject["paragraphs"].asJsonArray) {
                var paraText = ""
                for (word in para.asJsonObject["words"].asJsonArray) {
                    var wordText = ""
                    for (symbol in word.asJsonObject["symbols"].asJsonArray) {
                        wordText += symbol.asJsonObject["text"].asString
                        System.out.format("Symbol text: %s (confidence: %f)%n",
                            symbol.asJsonObject["text"].asString, symbol.asJsonObject["confidence"].asFloat)
                    }
                    System.out.format("Word text: %s (confidence: %f)%n%n", wordText,
                        word.asJsonObject["confidence"].asFloat)
                    System.out.format("Word bounding box: %s%n", word.asJsonObject["boundingBox"])
                    paraText = String.format("%s%s ", paraText, wordText)
                }
                System.out.format("%nParagraph: %n%s%n", paraText)
                System.out.format("Paragraph bounding box: %s%n", para.asJsonObject["boundingBox"])
                System.out.format("Paragraph Confidence: %f%n", para.asJsonObject["confidence"].asFloat)
                blockText += paraText
            }
            pageText += blockText
        }
    }