FirebaseSmartReplysmartReply=FirebaseNaturalLanguage.getInstance().getSmartReply();smartReply.suggestReplies(conversation).addOnSuccessListener(newOnSuccessListener<SmartReplySuggestionResult>(){@OverridepublicvoidonSuccess(SmartReplySuggestionResultresult){if(result.getStatus()==SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE){// The conversation's language isn't supported, so the// the result doesn't contain any suggestions.}elseif(result.getStatus()==SmartReplySuggestionResult.STATUS_SUCCESS){// Task completed successfully// ...}}}).addOnFailureListener(newOnFailureListener(){@OverridepublicvoidonFailure(@NonNullExceptione){// Task failed with an exception// ...}});
Kotlin
valsmartReply=FirebaseNaturalLanguage.getInstance().smartReplysmartReply.suggestReplies(conversation).addOnSuccessListener{result->
if(result.getStatus()==SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE){// The conversation's language isn't supported, so the// the result doesn't contain any suggestions.}elseif(result.getStatus()==SmartReplySuggestionResult.STATUS_SUCCESS){// Task completed successfully// ...}}.addOnFailureListener{// Task failed with an exception// ...}
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-09-04 (世界標準時間)。"],[],[],null,["You can use ML Kit to generate message replies using an on-device\nmodel.\n\nTo generate smart replies, you pass ML Kit a log of recent messages in a\nconversation. If ML Kit determines the conversation is in English, and that\nthe conversation doesn't have potentially sensitive subject matter, ML Kit\ngenerates up to three replies, which you can suggest to your user.\n\n\u003cbr /\u003e\n\nBefore you begin\n\n1. If you haven't already, [add Firebase to your Android project](/docs/android/setup).\n2. Add the dependencies for the ML Kit Android libraries to your module (app-level) Gradle file (usually `app/build.gradle`): \n\n ```carbon\n apply plugin: 'com.android.application'\n apply plugin: 'com.google.gms.google-services'\n\n dependencies {\n // ...\n implementation 'com.google.firebase:firebase-ml-natural-language:22.0.0'\n implementation 'com.google.firebase:firebase-ml-natural-language-smart-reply-model:20.0.7'\n }\n ```\n3. Also in your app-level `build.gradle` file, disable compression of `tflite` files: \n\n ```text\n android {\n // ...\n aaptOptions {\n noCompress \"tflite\"\n }\n }\n ```\n\n1. Create a conversation history object\n\nTo generate smart replies, you pass ML Kit a chronologically-ordered `List`\nof `FirebaseTextMessage` objects, with the earliest timestamp first.\n\nWhenever the user sends a message, add the message and its timestamp to the\nconversation history: \n\nJava \n\n conversation.add(FirebaseTextMessage.createForLocalUser(\n \"heading out now\", System.currentTimeMillis()));\n\nKotlin \n\n conversation.add(FirebaseTextMessage.createForLocalUser(\n \"heading out now\", System.currentTimeMillis()))\n\nWhenever the user receives a message, add the message, its timestamp, and the\nsender's user ID to the conversation history. The user ID can be any string that\nuniquely identifies the sender within the conversation. The user ID doesn't need\nto correspond to any user data, and the user ID doesn't need to be consistent\nbetween conversation or invocations of the smart reply generator. \n\nJava \n\n conversation.add(FirebaseTextMessage.createForRemoteUser(\n \"Are you coming back soon?\", System.currentTimeMillis(), userId));\n\nKotlin \n\n conversation.add(FirebaseTextMessage.createForRemoteUser(\n \"Are you coming back soon?\", System.currentTimeMillis(), userId))\n\nA conversation history object looks like the following example:\n\n| Timestamp | User ID | Local User? | Message |\n|------------------------------|---------|-------------|----------------------|\n| Thu Feb 21 13:13:39 PST 2019 | | true | are you on your way? |\n| Thu Feb 21 13:15:03 PST 2019 | FRIEND0 | false | Running late, sorry! |\n\nNote that the most recent message in the example above is from a non-local\nuser. This is important because ML Kit suggests replies intended to be sent\nby the user of your app: the local user. You should be sure you're passing\nML Kit a conversation log that ends with a message to which your user might\nwant to reply.\n\n2. Get message replies\n\nTo generate smart replies to a message, get an instance of `FirebaseSmartReply`\nand pass the conversation history to its `suggestReplies()` method: \n\nJava \n\n FirebaseSmartReply smartReply = FirebaseNaturalLanguage.getInstance().getSmartReply();\n smartReply.suggestReplies(conversation)\n .addOnSuccessListener(new OnSuccessListener\u003cSmartReplySuggestionResult\u003e() {\n @Override\n public void onSuccess(SmartReplySuggestionResult result) {\n if (result.getStatus() == SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE) {\n // The conversation's language isn't supported, so the\n // the result doesn't contain any suggestions.\n } else if (result.getStatus() == SmartReplySuggestionResult.STATUS_SUCCESS) {\n // Task completed successfully\n // ...\n }\n }\n })\n .addOnFailureListener(new OnFailureListener() {\n @Override\n public void onFailure(@NonNull Exception e) {\n // Task failed with an exception\n // ...\n }\n });\n\nKotlin \n\n val smartReply = FirebaseNaturalLanguage.getInstance().smartReply\n smartReply.suggestReplies(conversation)\n .addOnSuccessListener { result -\u003e\n if (result.getStatus() == SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE) {\n // The conversation's language isn't supported, so the\n // the result doesn't contain any suggestions.\n } else if (result.getStatus() == SmartReplySuggestionResult.STATUS_SUCCESS) {\n // Task completed successfully\n // ...\n }\n }\n .addOnFailureListener {\n // Task failed with an exception\n // ...\n }\n\nIf the operation succeeds, a `SmartReplySuggestionResult` object is passed to\nthe success handler. This object contains a list of up to 3 suggested replies,\nwhich you can present to your user: \n\nJava \n\n for (SmartReplySuggestion suggestion : result.getSuggestions()) {\n String replyText = suggestion.getText();\n }\n\nKotlin \n\n for (suggestion in result.suggestions) {\n val replyText = suggestion.text\n }\n\nNote that ML Kit might not return results if the model isn't confident in\nthe relevance of the suggested replies, the input conversation isn't in\nEnglish, or if the model detects sensitive subject matter."]]