Dopo aver addestrato il tuo modello utilizzando AutoML Vision Edge, puoi utilizzarlo nella tua app per etichettare le immagini.
Prima di iniziare
- Se non l'hai ancora fatto, aggiungi Firebase al tuo progetto Android.
- Aggiungi le dipendenze per le librerie Android ML Kit al file Gradle del modulo
(a livello di app, di solito
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5' }
1. Carica il modello
ML Kit esegue i modelli generati da AutoML sul dispositivo. Tuttavia, puoi configurare ML Kit per caricare il modello da remoto da Firebase, dallo storage locale o da entrambi.
Se ospiti il modello su Firebase, puoi aggiornarlo senza rilasciare una nuova versione dell'app e puoi utilizzare Remote Config e A/B Testing per mostrare dinamicamente modelli diversi a gruppi diversi di utenti.
Se scegli di fornire solo il modello ospitandolo con Firebase e non di raggrupparlo con la tua app, puoi ridurre le dimensioni del download iniziale dell'app. Tieni presente, tuttavia, che se il modello non è raggruppato con la tua app, qualsiasi funzionalità correlata al modello non sarà disponibile finché l'app non scarica il modello per la prima volta.
Se raggruppi il modello con l'app, puoi assicurarti che le funzionalità di ML dell'app continuino a funzionare anche quando il modello ospitato su Firebase non è disponibile.
Configura un'origine modello ospitata da Firebase
Per utilizzare il modello ospitato in remoto, crea un oggetto FirebaseAutoMLRemoteModel
,
specificando il nome che hai assegnato al modello quando lo hai pubblicato:
Java
// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();
Kotlin
// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()
Avvia quindi l'attività di download del modello, specificando le condizioni in base alle quali vuoi consentire il download. Se il modello non è sul dispositivo o se è disponibile una versione più recente, l'attività scaricherà in modo asincrono il modello da Firebase:
Java
FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener(new OnCompleteListener<Void>() {
@Override
public void onComplete(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin
val conditions = FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Success.
}
Molte app avviano l'attività di download nel codice di inizializzazione, ma puoi farlo in qualsiasi momento prima di dover utilizzare il modello.
Configurare un'origine modello locale
Per raggruppare il modello con l'app:
- Estrai il modello e i relativi metadati dall'archivio zip che hai scaricato dalla console Firebase. Ti consigliamo di utilizzare i file così come li hai scaricati, senza modifiche (inclusi i nomi dei file).
-
Includi il modello e i relativi file di metadati nel pacchetto dell'app:
- Se nel progetto non è presente una cartella degli asset, creane una facendo clic con il tasto destro del mouse sulla cartella
app/
, quindi facendo clic su Nuovo > Cartella > Cartella degli asset. - Crea una sottocartella nella cartella degli asset per contenere i file del modello.
- Copia i file
model.tflite
,dict.txt
emanifest.json
nella sottocartella (tutti e tre i file devono trovarsi nella stessa cartella).
- Se nel progetto non è presente una cartella degli asset, creane una facendo clic con il tasto destro del mouse sulla cartella
- Aggiungi quanto segue al file
build.gradle
dell'app per assicurarti che Gradle non comprima il file del modello durante la creazione dell'app: Il file del modello verrà incluso nel pacchetto dell'app e sarà disponibile per ML Kit come asset non elaborato.android { // ... aaptOptions { noCompress "tflite" } }
- Crea un oggetto
FirebaseAutoMLLocalModel
, specificando il percorso del file manifest del modello:Java
FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build();
Kotlin
val localModel = FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build()
Crea un'etichettatrice di immagini dal tuo modello
Dopo aver configurato le origini del modello, crea un FirebaseVisionImageLabeler
oggetto da una di queste.
Se hai solo un modello in bundle locale, crea un etichettatore dall'oggetto
FirebaseAutoMLLocalModel
e configura la soglia del punteggio di confidenza
che vuoi richiedere (vedi Valutare il modello):
Java
FirebaseVisionImageLabeler labeler;
try {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build();
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// ...
}
Kotlin
val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
Se hai un modello ospitato in remoto, devi verificare che sia stato
scaricato prima di eseguirlo. Puoi controllare lo stato del download del modello
utilizzando il metodo isModelDownloaded()
di Model Manager.
Anche se devi confermare questa operazione solo prima di eseguire l'etichettatore, se hai sia un modello ospitato in remoto sia un modello incluso localmente, potrebbe essere opportuno eseguire questo controllo durante l'istanza dell'etichettatore di immagini: crea un etichettatore dal modello remoto se è stato scaricato e dal modello locale in caso contrario.
Java
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
}
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate threshold.
.build();
FirebaseVisionImageLabeler labeler;
try {
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// Error.
}
}
});
Kotlin
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
} else {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Firebase console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}
Se hai solo un modello ospitato in remoto, devi disattivare la funzionalità
correlata al modello, ad esempio disattivare o nascondere parte della tua UI, finché
non confermi che il modello è stato scaricato. Puoi farlo collegando un listener
al metodo download()
del gestore dei modelli:
Java
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. Prepara l'immagine di input
Poi, per ogni immagine che vuoi etichettare, crea un oggetto FirebaseVisionImage
utilizzando una delle opzioni descritte in questa sezione e passalo a un'istanza di
FirebaseVisionImageLabeler
(descritta nella sezione successiva).
Puoi creare un oggetto FirebaseVisionImage
da un oggetto media.Image
, un
file sul dispositivo, un array di byte o un oggetto Bitmap
:
-
Per creare un oggetto
FirebaseVisionImage
da un oggettomedia.Image
, ad esempio quando acquisisci un'immagine dalla fotocamera di un dispositivo, passa l'oggettomedia.Image
e la rotazione dell'immagine aFirebaseVisionImage.fromMediaImage()
.Se utilizzi la libreria CameraX, le classi
OnImageCapturedListener
eImageAnalysis.Analyzer
calcolano il valore di rotazione per te, quindi devi solo convertire la rotazione in una delle costantiROTATION_
di ML Kit prima di chiamareFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Se non utilizzi una libreria di fotocamere che ti fornisce la rotazione dell'immagine, puoi calcolarla dalla rotazione del dispositivo e dall'orientamento del sensore della fotocamera nel dispositivo:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Poi, passa l'oggetto
media.Image
e il valore di rotazione aFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Per creare un oggetto
FirebaseVisionImage
da un URI file, passa il contesto dell'app e l'URI file aFirebaseVisionImage.fromFilePath()
. Questa funzionalità è utile quando utilizzi un intentACTION_GET_CONTENT
per chiedere all'utente di selezionare un'immagine dalla sua app galleria.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Per creare un oggetto
FirebaseVisionImage
da unByteBuffer
o da un array di byte, calcola prima la rotazione dell'immagine come descritto sopra per l'inputmedia.Image
.Poi, crea un oggetto
FirebaseVisionImageMetadata
che contenga altezza, larghezza, formato di codifica del colore e rotazione dell'immagine:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Utilizza il buffer o l'array e l'oggetto metadati per creare un oggetto
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Per creare un oggetto
FirebaseVisionImage
da un oggettoBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
deve essere verticale, senza necessità di rotazione aggiuntiva.
3. Esegui l'etichettatore di immagini
Per etichettare gli oggetti in un'immagine, passa l'oggetto FirebaseVisionImage
al
metodo processImage()
di FirebaseVisionImageLabeler
.
Java
labeler.processImage(image)
.addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
@Override
public void onSuccess(List<FirebaseVisionImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin
labeler.processImage(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
Se l'etichettatura delle immagini va a buon fine, un array di oggetti FirebaseVisionImageLabel
verrà passato al listener di successo. Da ogni oggetto puoi ottenere
informazioni su una funzionalità riconosciuta nell'immagine.
Ad esempio:
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
float confidence = label.getConfidence();
}
Kotlin
for (label in labels) {
val text = label.text
val confidence = label.confidence
}
Suggerimenti per migliorare il rendimento in tempo reale
- Limita le chiamate al rilevatore. Se un nuovo frame video diventa disponibile durante l'esecuzione del rilevatore, eliminalo.
- Se utilizzi l'output del rilevatore per sovrapporre elementi grafici all'immagine di input, prima ottieni il risultato da ML Kit, poi esegui il rendering dell'immagine e la sovrapposizione in un unico passaggio. In questo modo, il rendering sulla superficie di visualizzazione viene eseguito una sola volta per ogni frame di input.
-
Se utilizzi l'API Camera2, acquisisci immagini in formato
ImageFormat.YUV_420_888
.Se utilizzi la versione precedente dell'API Camera, acquisisci immagini in formato
ImageFormat.NV21
.