Możesz użyć pakietu ML Kit do rozpoznawania dobrze znanych punktów orientacyjnych na obrazie.
Zanim zaczniesz
- Jeśli jeszcze nie masz tego za sobą, dodaj Firebase do swojego projektu na Androida.
- Dodaj do modułu zależności między bibliotekami ML Kit na Androida
Plik Gradle (na poziomie aplikacji) (zwykle
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' }
-
Jeśli w swoim projekcie nie włączono jeszcze interfejsów API działających w chmurze, zrób to. teraz:
- Otwórz ML Kit Strona interfejsów API w konsoli Firebase.
-
Jeśli w swoim projekcie nie korzystasz jeszcze z abonamentu Blaze, kliknij Aby to zrobić, przejdź na wyższą wersję. (Prośba o uaktualnienie wyświetli się tylko wtedy, gdy projekt nie jest objęty abonamentem Blaze).
Tylko projekty na poziomie Blaze mogą korzystać z interfejsów API działających w chmurze.
- Jeśli interfejsy API działające w chmurze nie są włączone, kliknij Włącz działające w chmurze interfejsów API.
Konfigurowanie wykrywania punktów orientacyjnych
Domyślnie detektor Cloud używa wersji STABLE
interfejsu
model i zwraca maksymalnie 10 wyników. Jeśli chcesz zmienić którąś z tych opcji
ustawień, określ je za pomocą elementu FirebaseVisionCloudDetectorOptions
obiektu.
Aby na przykład zmienić oba ustawienia domyślne, utwórz
FirebaseVisionCloudDetectorOptions
obiekt jak ten
przykład:
Java
FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
Kotlin+KTX
val options = FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build()
Aby użyć ustawień domyślnych, możesz użyć
FirebaseVisionCloudDetectorOptions.DEFAULT
w następnym kroku.
Uruchom wykrywanie punktów orientacyjnych
Aby rozpoznawać punkty orientacyjne na zdjęciu, utwórz obiektFirebaseVisionImage
z obiektu Bitmap
, media.Image
, ByteBuffer
, tablicy bajtów lub pliku w
urządzenia. Następnie przekaż obiekt FirebaseVisionImage
do funkcji
Metoda detectInImage
użytkownika FirebaseVisionCloudLandmarkDetector
.
Utwórz obiekt
FirebaseVisionImage
na podstawie swojego obrazu.-
Aby utworzyć obiekt
FirebaseVisionImage
na podstawiemedia.Image
, np. podczas przechwytywania obrazu z z aparatu urządzenia, przekazać obiektmedia.Image
oraz w kierunkuFirebaseVisionImage.fromMediaImage()
.Jeśli używasz tagu CameraX,
OnImageCapturedListener
orazImageAnalysis.Analyzer
klasy obliczają wartość rotacji więc wystarczy zmienić rotację na jeden z zestawów ML Kit StałyROTATION_
przed nawiązaniem połączeniaFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Jeśli nie korzystasz z biblioteki aparatu zapewniającej obrót obrazu, może go obliczyć na podstawie obrotu urządzenia i orientacji aparatu czujnik w urządzeniu:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Następnie przekaż obiekt
media.Image
oraz wartość rotacji doFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Aby utworzyć obiekt
FirebaseVisionImage
na podstawie identyfikatora URI pliku, przekaż kontekst aplikacji i identyfikator URI plikuFirebaseVisionImage.fromFilePath()
Jest to przydatne, gdy użyj intencjiACTION_GET_CONTENT
, aby zachęcić użytkownika do wyboru obraz z aplikacji Galeria.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Aby utworzyć obiekt
FirebaseVisionImage
na podstawieByteBuffer
lub tablicy bajtów, najpierw oblicz wartość obrazu w sposób opisany powyżej dla danych wejściowychmedia.Image
.Następnie utwórz obiekt
FirebaseVisionImageMetadata
określającą wysokość, szerokość i format kodowania kolorów obrazu i rotacja:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Za pomocą bufora lub tablicy oraz obiektu metadanych utwórz
FirebaseVisionImage
obiekt:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Aby utworzyć obiekt
FirebaseVisionImage
na podstawie ObiektBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
musi być pionowo bez konieczności dodatkowego obracania.
-
Pobierz instancję
FirebaseVisionCloudLandmarkDetector
:Java
FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() .getVisionCloudLandmarkDetector(); // Or, to change the default settings: // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .visionCloudLandmarkDetector // Or, to change the default settings: // val detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options)
Na koniec przekaż obraz do metody
detectInImage
:Java
Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() { @Override public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { firebaseVisionCloudLandmarks -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Uzyskiwanie informacji o znanych punktach orientacyjnych
Jeśli operacja rozpoznawania punktu orientacyjnego zakończy się powodzeniem, lista ObiektyFirebaseVisionCloudLandmark
zostaną przekazane detektorowi sukcesu. Każdy
FirebaseVisionCloudLandmark
obiekt reprezentuje punkt orientacyjny rozpoznany w
. Współrzędne ograniczające każdego punktu orientacyjnego można sprawdzić na obrazie wejściowym,
nazwa punktu orientacyjnego, jego szerokość i długość geograficzna oraz identyfikator jednostki Grafu wiedzy.
(jeśli jest dostępny) oraz wskaźnik ufności dopasowania. Przykład:
Java
for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) { Rect bounds = landmark.getBoundingBox(); String landmarkName = landmark.getLandmark(); String entityId = landmark.getEntityId(); float confidence = landmark.getConfidence(); // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (FirebaseVisionLatLng loc: landmark.getLocations()) { double latitude = loc.getLatitude(); double longitude = loc.getLongitude(); } }
Kotlin+KTX
for (landmark in firebaseVisionCloudLandmarks) { val bounds = landmark.boundingBox val landmarkName = landmark.landmark val entityId = landmark.entityId val confidence = landmark.confidence // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (loc in landmark.locations) { val latitude = loc.latitude val longitude = loc.longitude } }
Dalsze kroki
- Przed wdrożeniem w środowisku produkcyjnym aplikacji korzystającej z interfejsu Cloud API wykonaj dodatkowe kroki, które zapobiegają i ograniczają efekt nieautoryzowanego dostępu do interfejsu API.