Do rozpoznawania tekstu na obrazach możesz używać pakietu ML Kit. ML Kit ma ogólnego przeznaczenia API, odpowiedni do rozpoznawania tekstu na obrazach, takiego jak i tekstu znaku drogowego oraz interfejs API zoptymalizowany pod kątem rozpoznawania tekstu dokumenty. Interfejs API do zwykłych obciążeń obejmuje modele działające na urządzeniu i w chmurze. Rozpoznawanie tekstu dokumentów jest dostępne tylko jako model działający w chmurze. Zobacz przegląd, aby porównać w chmurze i na urządzeniu.
Zanim zaczniesz
- Jeśli nie masz jeszcze w aplikacji dodanej Firebase, wykonaj czynności podane w przewodniku dla początkujących.
- Umieść biblioteki ML Kit w pliku Podfile:
pod 'Firebase/MLVision', '6.25.0' # If using an on-device API: pod 'Firebase/MLVisionTextModel', '6.25.0'
Po zainstalowaniu lub zaktualizowaniu podów projektu otwórz Xcode projektu za pomocą jego.xcworkspace
. - W aplikacji zaimportuj Firebase:
Swift
import Firebase
Objective-C
@import Firebase;
-
Jeśli chcesz używać modelu działającego w chmurze, który nie został jeszcze włączony interfejsów API działających w chmurze w Twoim projekcie, zrób to teraz:
- Otwórz ML Kit Strona interfejsów API w konsoli Firebase.
-
Jeśli w swoim projekcie nie korzystasz jeszcze z abonamentu Blaze, kliknij Aby to zrobić, przejdź na wyższą wersję. (Prośba o uaktualnienie wyświetli się tylko wtedy, gdy projekt nie jest objęty abonamentem Blaze).
Tylko projekty na poziomie Blaze mogą korzystać z interfejsów API działających w chmurze.
- Jeśli interfejsy API działające w chmurze nie są włączone, kliknij Włącz działające w chmurze interfejsów API.
Jeśli chcesz używać tylko modelu na urządzeniu, możesz pominąć ten krok.
Teraz możesz zacząć rozpoznawać tekst na obrazach.
Wytyczne dotyczące obrazu wejściowego
-
Aby ML Kit mógł dokładnie rozpoznawać tekst, obrazy wejściowe muszą zawierać który jest reprezentowany przez wystarczającą ilość danych pikseli. najlepiej dla alfabetu łacińskiego tekstu, każdy znak powinien mieć co najmniej 16 x 16 pikseli. W przypadku języka chińskiego, tekst w języku japońskim i koreańskim (obsługiwany tylko przez interfejsy API działające w chmurze), każdy powinien mieć rozmiar 24 x 24 piksele. Dla wszystkich języków zwykle nie ma funkcji w przypadku znaków większych niż 24 x 24 piksele.
Na przykład obraz o wymiarach 640 x 480 może się sprawdzić do zeskanowania wizytówki zajmuje całą szerokość obrazu. Aby zeskanować dokument wydrukowany na na papierze w formacie letter, może być wymagany obraz o wymiarach 720 x 1280 pikseli.
-
Słaba ostrość obrazu może obniżyć dokładność rozpoznawania tekstu. Jeśli nim nie jesteś uzyskać akceptowalne wyniki, poproś użytkownika o ponowne przechwycenie obrazu.
-
Jeśli rozpoznajesz tekst w aplikacji działającej w czasie rzeczywistym, możesz też należy wziąć pod uwagę ogólne wymiary obrazów wejściowych. Mniejszy szybsze przetwarzanie obrazów. Aby zmniejszyć opóźnienia, należy robić zdjęcia mniejsza rozdzielczość (pamiętając o powyższych wymaganiach dotyczących dokładności) aby tekst zajmował jak największą część obrazu. Zobacz też Wskazówki, jak zwiększyć skuteczność w czasie rzeczywistym.
Rozpoznawanie tekstu w obrazach
Aby rozpoznać tekst na obrazie za pomocą modelu działającego na urządzeniu lub w chmurze: uruchom moduł rozpoznawania tekstu w sposób opisany poniżej.
1. Uruchom moduł rozpoznawania tekstu
Przekaż obraz jako „UIImage” lub „CMSampleBufferRef” do `Proces `VisionText wskaźniki(_:completion:)` :- Uzyskaj instancję
VisionTextRecognizer
, wywołując jedną z tych opcji:onDeviceTextRecognizer
lubcloudTextRecognizer
:Swift
Aby używać modelu na urządzeniu:
let vision = Vision.vision() let textRecognizer = vision.onDeviceTextRecognizer()
Aby używać modelu w chmurze:
let vision = Vision.vision() let textRecognizer = vision.cloudTextRecognizer() // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages let options = VisionCloudTextRecognizerOptions() options.languageHints = ["en", "hi"] let textRecognizer = vision.cloudTextRecognizer(options: options)
Objective-C
Aby używać modelu na urządzeniu:
FIRVision *vision = [FIRVision vision]; FIRVisionTextRecognizer *textRecognizer = [vision onDeviceTextRecognizer];
Aby używać modelu w chmurze:
FIRVision *vision = [FIRVision vision]; FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer]; // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FIRVisionCloudTextRecognizerOptions *options = [[FIRVisionCloudTextRecognizerOptions alloc] init]; options.languageHints = @[@"en", @"hi"]; FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
-
Utwórz obiekt
VisionImage
za pomocąUIImage
lubCMSampleBufferRef
.Aby użyć karty
UIImage
:- W razie potrzeby obróć zdjęcie, tak by jego
imageOrientation
właściwość to.up
. - Utwórz obiekt
VisionImage
przy użyciu prawidłowo wykonanej rotacjiUIImage
Nie określaj żadnych metadanych rotacji – są to metadane domyślne..topLeft
.Swift
let image = VisionImage(image: uiImage)
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
Aby użyć karty
CMSampleBufferRef
:-
Utwórz obiekt
VisionImageMetadata
, który określa orientacji danych zdjęć zawartych w BuforCMSampleBufferRef
.Aby sprawdzić orientację obrazu:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> VisionDetectorImageOrientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftTop : .rightTop case .landscapeLeft: return cameraPosition == .front ? .bottomLeft : .topLeft case .portraitUpsideDown: return cameraPosition == .front ? .rightBottom : .leftBottom case .landscapeRight: return cameraPosition == .front ? .topRight : .bottomRight case .faceDown, .faceUp, .unknown: return .leftTop } }
Objective-C
- (FIRVisionDetectorImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationLeftTop; } else { return FIRVisionDetectorImageOrientationRightTop; } case UIDeviceOrientationLandscapeLeft: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationBottomLeft; } else { return FIRVisionDetectorImageOrientationTopLeft; } case UIDeviceOrientationPortraitUpsideDown: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationRightBottom; } else { return FIRVisionDetectorImageOrientationLeftBottom; } case UIDeviceOrientationLandscapeRight: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationTopRight; } else { return FIRVisionDetectorImageOrientationBottomRight; } default: return FIRVisionDetectorImageOrientationTopLeft; } }
Następnie utwórz obiekt metadanych:
Swift
let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used. let metadata = VisionImageMetadata() metadata.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition )
Objective-C
FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init]; AVCaptureDevicePosition cameraPosition = AVCaptureDevicePositionBack; // Set to the capture device you used. metadata.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
- Utwórz obiekt
VisionImage
za pomocą ObiektCMSampleBufferRef
i metadane rotacji:Swift
let image = VisionImage(buffer: sampleBuffer) image.metadata = metadata
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer]; image.metadata = metadata;
- W razie potrzeby obróć zdjęcie, tak by jego
-
Następnie przekaż obraz do metody
process(_:completion:)
:Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // ... return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(FIRVisionText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // ... return; } // Recognized text }];
2. Wyodrębnianie tekstu z bloków rozpoznanego tekstu
Jeśli rozpoznawanie tekstu się powiedzie, zwróci błąd Obiekt [`VisionText`][VisionText]. Obiekt „VisionText” zawiera pełny tekst rozpoznane na zdjęciu i zero lub więcej wartości [`VisionTextBlock`][VisionTextBlock] obiektów. Każdy element „VisionTextBlock” reprezentuje prostokątny blok tekstu zawierający zero lub więcej obiektów [`VisionTextLine`][VisionTextLine]. Każda linia „VisionTextLine” obiekt zawiera zero lub więcej obiektów [`VisionTextElement`][VisionTextElement], które reprezentują słowa i elementy słowne (daty, liczby itd.). Dla każdego obiektu `VisionTextBlock`, `VisionTextLine` i `VisionTextElement` dzięki czemu tekst zostanie rozpoznany w regionie, a współrzędne ograniczające i regionie. Przykład:Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockConfidence = block.confidence let blockLanguages = block.recognizedLanguages let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for line in block.lines { let lineText = line.text let lineConfidence = line.confidence let lineLanguages = line.recognizedLanguages let lineCornerPoints = line.cornerPoints let lineFrame = line.frame for element in line.elements { let elementText = element.text let elementConfidence = element.confidence let elementLanguages = element.recognizedLanguages let elementCornerPoints = element.cornerPoints let elementFrame = element.frame } } }
Objective-C
NSString *resultText = result.text; for (FIRVisionTextBlock *block in result.blocks) { NSString *blockText = block.text; NSNumber *blockConfidence = block.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages; NSArray<NSValue *> *blockCornerPoints = block.cornerPoints; CGRect blockFrame = block.frame; for (FIRVisionTextLine *line in block.lines) { NSString *lineText = line.text; NSNumber *lineConfidence = line.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages; NSArray<NSValue *> *lineCornerPoints = line.cornerPoints; CGRect lineFrame = line.frame; for (FIRVisionTextElement *element in line.elements) { NSString *elementText = element.text; NSNumber *elementConfidence = element.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages; NSArray<NSValue *> *elementCornerPoints = element.cornerPoints; CGRect elementFrame = element.frame; } } }
Wskazówki dotyczące poprawy skuteczności w czasie rzeczywistym
Jeśli chcesz używać modelu na urządzeniu do rozpoznawania tekstu w czasie rzeczywistym zastosuj się do tych wskazówek, by uzyskać najlepszą liczbę klatek na sekundę:
- Ogranicz wywołania do modułu rozpoznawania tekstu. Jeśli nowa klatka wideo dostępne podczas działania modułu rozpoznawania tekstu, upuść ramkę.
- Jeśli używasz danych wyjściowych modułu rozpoznawania tekstu do nakładania grafiki na obrazu wejściowego, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz i nakładanie nakładek w jednym kroku. W ten sposób renderowanie na powierzchni tylko raz na każdą ramkę wejściową. Zobacz previewOverlayView. i FIRDetectionOverlayView w aplikacji z funkcją prezentacji.
- Rozważ robienie zdjęć w niższej rozdzielczości. Pamiętaj jednak, wymagania dotyczące wymiarów obrazów w tym interfejsie API.
Dalsze kroki
- Przed wdrożeniem w środowisku produkcyjnym aplikacji korzystającej z interfejsu Cloud API wykonaj dodatkowe kroki, które zapobiegają i ograniczają efekt nieautoryzowanego dostępu do interfejsu API.
Rozpoznawanie tekstu na obrazach dokumentów
Aby rozpoznać tekst dokumentu, skonfiguruj i uruchom rozpoznawania tekstu dokumentu, zgodnie z opisem poniżej.
Opisany poniżej interfejs API rozpoznawania tekstu dokumentów zapewnia interfejs, ma ułatwić pracę z obrazami dokumentów. Pamiętaj jednak: Jeśli wolisz interfejs udostępniany przez interfejs API rozproszonego tekstu, możesz go zamiast skanować dokumenty przez skonfigurowanie modułu rozpoznawania tekstu w chmurze używają modelu gęstego.
Aby użyć interfejsu API rozpoznawania tekstu dokumentów:
1. Uruchom moduł rozpoznawania tekstu
Przekaż obraz jakoUIImage
lub CMSampleBufferRef
do
process(_:completion:)
, użytkownik VisionDocumentTextRecognizer
:
- Pobierz instancję
VisionDocumentTextRecognizer
, wywołująccloudDocumentTextRecognizer
:Swift
let vision = Vision.vision() let textRecognizer = vision.cloudDocumentTextRecognizer() // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages let options = VisionCloudDocumentTextRecognizerOptions() options.languageHints = ["en", "hi"] let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)
Objective-C
FIRVision *vision = [FIRVision vision]; FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer]; // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FIRVisionCloudDocumentTextRecognizerOptions *options = [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init]; options.languageHints = @[@"en", @"hi"]; FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
-
Utwórz obiekt
VisionImage
za pomocąUIImage
lubCMSampleBufferRef
.Aby użyć karty
UIImage
:- W razie potrzeby obróć zdjęcie, tak by jego
imageOrientation
właściwość to.up
. - Utwórz obiekt
VisionImage
przy użyciu prawidłowo wykonanej rotacjiUIImage
Nie określaj żadnych metadanych rotacji – są to metadane domyślne..topLeft
.Swift
let image = VisionImage(image: uiImage)
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
Aby użyć karty
CMSampleBufferRef
:-
Utwórz obiekt
VisionImageMetadata
, który określa orientacji danych zdjęć zawartych w BuforCMSampleBufferRef
.Aby sprawdzić orientację obrazu:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> VisionDetectorImageOrientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftTop : .rightTop case .landscapeLeft: return cameraPosition == .front ? .bottomLeft : .topLeft case .portraitUpsideDown: return cameraPosition == .front ? .rightBottom : .leftBottom case .landscapeRight: return cameraPosition == .front ? .topRight : .bottomRight case .faceDown, .faceUp, .unknown: return .leftTop } }
Objective-C
- (FIRVisionDetectorImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationLeftTop; } else { return FIRVisionDetectorImageOrientationRightTop; } case UIDeviceOrientationLandscapeLeft: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationBottomLeft; } else { return FIRVisionDetectorImageOrientationTopLeft; } case UIDeviceOrientationPortraitUpsideDown: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationRightBottom; } else { return FIRVisionDetectorImageOrientationLeftBottom; } case UIDeviceOrientationLandscapeRight: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationTopRight; } else { return FIRVisionDetectorImageOrientationBottomRight; } default: return FIRVisionDetectorImageOrientationTopLeft; } }
Następnie utwórz obiekt metadanych:
Swift
let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used. let metadata = VisionImageMetadata() metadata.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition )
Objective-C
FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init]; AVCaptureDevicePosition cameraPosition = AVCaptureDevicePositionBack; // Set to the capture device you used. metadata.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
- Utwórz obiekt
VisionImage
za pomocą ObiektCMSampleBufferRef
i metadane rotacji:Swift
let image = VisionImage(buffer: sampleBuffer) image.metadata = metadata
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer]; image.metadata = metadata;
- W razie potrzeby obróć zdjęcie, tak by jego
-
Następnie przekaż obraz do metody
process(_:completion:)
:Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // ... return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(FIRVisionDocumentText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // ... return; } // Recognized text }];
2. Wyodrębnianie tekstu z bloków rozpoznanego tekstu
Jeśli rozpoznawanie tekstu się powiedzie, zwróci błądVisionDocumentText
. Obiekt VisionDocumentText
zawiera pełny tekst rozpoznany na obrazie oraz hierarchię obiektów,
odzwierciedlają strukturę rozpoznanego dokumentu:
W przypadku każdej wartości VisionDocumentTextBlock
, VisionDocumentTextParagraph
,
VisionDocumentTextWord
i VisionDocumentTextSymbol
, możesz uzyskać
tekstu rozpoznawanego w regionie oraz jego współrzędnych geograficznych.
Przykład:
Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockConfidence = block.confidence let blockRecognizedLanguages = block.recognizedLanguages let blockBreak = block.recognizedBreak let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for paragraph in block.paragraphs { let paragraphText = paragraph.text let paragraphConfidence = paragraph.confidence let paragraphRecognizedLanguages = paragraph.recognizedLanguages let paragraphBreak = paragraph.recognizedBreak let paragraphCornerPoints = paragraph.cornerPoints let paragraphFrame = paragraph.frame for word in paragraph.words { let wordText = word.text let wordConfidence = word.confidence let wordRecognizedLanguages = word.recognizedLanguages let wordBreak = word.recognizedBreak let wordCornerPoints = word.cornerPoints let wordFrame = word.frame for symbol in word.symbols { let symbolText = symbol.text let symbolConfidence = symbol.confidence let symbolRecognizedLanguages = symbol.recognizedLanguages let symbolBreak = symbol.recognizedBreak let symbolCornerPoints = symbol.cornerPoints let symbolFrame = symbol.frame } } } }
Objective-C
NSString *resultText = result.text; for (FIRVisionDocumentTextBlock *block in result.blocks) { NSString *blockText = block.text; NSNumber *blockConfidence = block.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages; FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak; CGRect blockFrame = block.frame; for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) { NSString *paragraphText = paragraph.text; NSNumber *paragraphConfidence = paragraph.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages; FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak; CGRect paragraphFrame = paragraph.frame; for (FIRVisionDocumentTextWord *word in paragraph.words) { NSString *wordText = word.text; NSNumber *wordConfidence = word.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages; FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak; CGRect wordFrame = word.frame; for (FIRVisionDocumentTextSymbol *symbol in word.symbols) { NSString *symbolText = symbol.text; NSNumber *symbolConfidence = symbol.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages; FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak; CGRect symbolFrame = symbol.frame; } } } }
Dalsze kroki
- Przed wdrożeniem w środowisku produkcyjnym aplikacji korzystającej z interfejsu Cloud API wykonaj dodatkowe kroki, które zapobiegają i ograniczają efekt nieautoryzowanego dostępu do interfejsu API.