Scansiona i codici a barre con ML Kit su Android

Puoi utilizzare ML Kit per riconoscere e decodificare i codici a barre.

Prima di iniziare

  1. Se non l'hai già fatto, aggiungi Firebase al tuo progetto Android.
  2. Aggiungi le dipendenze per le librerie Android di ML Kit al file Gradle del tuo modulo (a livello di app) (di solito app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-barcode-model:16.0.1'
    }

Linee guida per l'immagine di input

  • Affinché ML Kit legga con precisione i codici a barre, le immagini di input devono contenere codici a barre rappresentati da dati di pixel sufficienti.

    I requisiti specifici dei dati relativi ai pixel dipendono da entrambi i tipi di il codice a barre e la quantità di dati codificati al suo interno (dato che la maggior parte dei codici a barre supporta un payload di lunghezza variabile). In generale, la variante più piccola dell'unità di misura del codice a barre deve essere larga almeno 2 pixel (e per codici bidimensionali, altezza 2 pixel).

    Ad esempio, i codici a barre EAN-13 sono composti da barre e spazi che sono 1, 2, 3 o 4 unità di larghezza, quindi un'immagine con codice a barre EAN-13 idealmente contiene barre e spazi di almeno 2, 4, 6 e 8 pixel di larghezza. Poiché un codice a barre EAN-13 ha una larghezza totale di 95 unità, deve avere una larghezza di almeno 190 pixel.

    I formati più densi, come PDF417, richiedono dimensioni dei pixel maggiori per consentire a ML Kit di leggerli in modo affidabile. Ad esempio, un codice PDF417 può avere fino a 34 "parole" di 17 unità di un'unica riga, il che sarebbe idealmente Larghezza 1156 pixel.

  • Una scarsa messa a fuoco dell'immagine può compromettere la precisione della scansione. Se non ricevi accettabili, prova a chiedere all'utente di recuperare l'immagine.

  • Per le applicazioni tipiche, si consiglia di fornire una maggiore un'immagine con risoluzione massima (ad esempio 1280 x 720 o 1920 x 1080), che crea i codici a barre rilevabile da una distanza maggiore dalla fotocamera.

    Tuttavia, nelle applicazioni in cui la latenza è fondamentale, puoi migliorare le prestazioni acquisendo immagini a una risoluzione inferiore, ma richiedendo che il codice a barre rappresenti la maggior parte dell'immagine di input. Vedi anche Suggerimenti per migliorare il rendimento in tempo reale.

1. Configurare il rilevatore di codici a barre

Se sai quali formati di codici a barre ti aspetti di leggere, puoi migliorare la velocità del rilevatore di codici a barre configurandolo per rilevare solo quei formati.

Ad esempio, per rilevare solo codici Aztec e QR, crea un oggetto FirebaseVisionBarcodeDetectorOptions come nell'esempio seguente:

Java

FirebaseVisionBarcodeDetectorOptions options =
        new FirebaseVisionBarcodeDetectorOptions.Builder()
        .setBarcodeFormats(
                FirebaseVisionBarcode.FORMAT_QR_CODE,
                FirebaseVisionBarcode.FORMAT_AZTEC)
        .build();

Kotlin+KTX

val options = FirebaseVisionBarcodeDetectorOptions.Builder()
        .setBarcodeFormats(
                FirebaseVisionBarcode.FORMAT_QR_CODE,
                FirebaseVisionBarcode.FORMAT_AZTEC)
        .build()

Sono supportati i seguenti formati:

  • Codice 128 (FORMAT_CODE_128)
  • Codice 39 (FORMAT_CODE_39)
  • Codice 93 (FORMAT_CODE_93)
  • Codabar (FORMAT_CODABAR)
  • EAN-13 (FORMAT_EAN_13)
  • EAN-8 (FORMAT_EAN_8)
  • ITF (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • Codice QR (FORMAT_QR_CODE)
  • PDF417 (FORMAT_PDF417)
  • Azteca (FORMAT_AZTEC)
  • Matrice di dati (FORMAT_DATA_MATRIX)
di Gemini Advanced.

2. Attiva il rilevatore di codici a barre

Per riconoscere i codici a barre in un'immagine, crea un oggetto FirebaseVisionImage da un array di byte Bitmap, media.Image, ByteBuffer, o da un file del dispositivo. Quindi, passa l'oggetto FirebaseVisionImage Metodo detectInImage di FirebaseVisionBarcodeDetector.

  1. Crea un oggetto FirebaseVisionImage dalla tua immagine.

    • Per creare un oggetto FirebaseVisionImage da un media.Image, ad esempio quando acquisisci un'immagine da un fotocamera del dispositivo, passa l'oggetto media.Image e l'oggetto rotazione in FirebaseVisionImage.fromMediaImage().

      Se utilizzi nella libreria di CameraX, OnImageCapturedListener e ImageAnalysis.Analyzer classi calcolano il valore di rotazione quindi devi solo convertire la rotazione in una Costanti ROTATION_ prima di chiamare FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Se non utilizzi una raccolta di videocamere che ti fornisce la rotazione dell'immagine, può calcolarla in base alla rotazione del dispositivo e all'orientamento della fotocamera nel dispositivo:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Poi, passa l'oggetto media.Image e il valore di rotazione a FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Per creare un oggetto FirebaseVisionImage da un URI file, passa il contesto dell'app e l'URI file a FirebaseVisionImage.fromFilePath(). È utile quando utilizza un intent ACTION_GET_CONTENT per chiedere all'utente di selezionare un'immagine dall'app Galleria.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Per creare un oggetto FirebaseVisionImage da un ByteBuffer o un array di byte, calcola prima l'immagine rotazione come descritto sopra per l'input media.Image.

      Quindi, crea un oggetto FirebaseVisionImageMetadata che contiene l'altezza, la larghezza, il formato di codifica del colore, e rotazione:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Utilizza l'array o il buffer e l'oggetto dei metadati per creare un oggetto FirebaseVisionImage:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Per creare un oggetto FirebaseVisionImage da un Oggetto Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      L'immagine rappresentata dall'oggetto Bitmap deve in posizione verticale, senza la necessità di ulteriori rotazioni.

  2. Recupera un'istanza di FirebaseVisionBarcodeDetector:

    Java

    FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance()
            .getVisionBarcodeDetector();
    // Or, to specify the formats to recognize:
    // FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance()
    //        .getVisionBarcodeDetector(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .visionBarcodeDetector
    // Or, to specify the formats to recognize:
    // val detector = FirebaseVision.getInstance()
    //        .getVisionBarcodeDetector(options)
  3. Infine, passa l'immagine al metodo detectInImage:

    Java

    Task<List<FirebaseVisionBarcode>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionBarcode>>() {
                @Override
                public void onSuccess(List<FirebaseVisionBarcode> barcodes) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
                    });

    Kotlin+KTX

    val result = detector.detectInImage(image)
            .addOnSuccessListener { barcodes ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener {
                // Task failed with an exception
                // ...
            }

3. Ricevere informazioni da codici a barre

Se il riconoscimento del codice a barre ha esito positivo, viene visualizzato un elenco FirebaseVisionBarcode oggetti verranno passati al listener riuscito. Ogni oggetto FirebaseVisionBarcode rappresenta un codice a barre rilevato nell'immagine. Per ogni codice a barre, puoi ottenere le coordinate di confine nell'immagine di input, nonché i dati non elaborati codificati dal codice a barre. Inoltre, se il codice a barre è stato in grado di determinare il tipo di dati codificati dal codice a barre, puoi ottiene un oggetto contenente dati analizzati.

Ad esempio:

Java

for (FirebaseVisionBarcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case FirebaseVisionBarcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case FirebaseVisionBarcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

Kotlin+KTX

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        FirebaseVisionBarcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        FirebaseVisionBarcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Suggerimenti per migliorare il rendimento in tempo reale

Se desideri eseguire la scansione dei codici a barre in un'applicazione in tempo reale, procedi nel seguente modo: linee guida per ottenere le migliori frequenze fotogrammi:

  • Non acquisire input alla risoluzione nativa della videocamera. Su alcuni dispositivi, l'input alla risoluzione nativa produce risultati estremamente grandi (10+ megapixel), il che genera una latenza molto scarsa senza alcun vantaggio la precisione. Richiedi invece alla fotocamera solo la dimensione necessaria per il rilevamento dei codici a barre: di solito non più di 2 megapixel.

    Se la velocità di scansione è importante, puoi ridurre ulteriormente l'acquisizione delle immagini risoluzione del problema. Tuttavia, tieni presente i requisiti minimi relativi alle dimensioni del codice a barre descritti sopra.

  • Limita le chiamate al rilevatore. Se un nuovo frame video diventa disponibile mentre il rilevatore è in esecuzione, inseriscilo.
  • Se utilizzi l'output del rilevatore per sovrapporre gli elementi grafici l'immagine di input, occorre prima ottenere il risultato da ML Kit, quindi eseguire il rendering dell'immagine e la sovrapposizione in un solo passaggio. In questo modo, puoi visualizzare i contenuti solo una volta per ogni frame di input.
  • Se utilizzi l'API Camera2, acquisisci le immagini in Formato ImageFormat.YUV_420_888.

    Se utilizzi la precedente API Camera, acquisisci le immagini in formato ImageFormat.NV21.