Etichetta le immagini con un modello con addestramento AutoML su iOS

Dopo aver addestrato modello utilizzando AutoML Vision Edge, puoi usarlo nella tua app per etichettare in formato Docker.

Prima di iniziare

  1. Se non hai già aggiunto Firebase alla tua app, puoi farlo seguendo le istruzioni riportate in passaggi nella Guida introduttiva.
  2. Includi le librerie del kit ML nel tuo podfile:
    pod 'Firebase/MLVision', '6.25.0'
    pod 'Firebase/MLVisionAutoML', '6.25.0'
    
    Dopo aver installato o aggiornato i pod del progetto, assicurati di aprire Xcode utilizzando il suo .xcworkspace.
  3. Nell'app, importa Firebase:

    Swift

    import Firebase

    Objective-C

    @import Firebase;

1. Carica il modello

ML Kit esegue i modelli generati con AutoML sul dispositivo. Tuttavia, puoi configurare ML Kit per caricare il modello da remoto da Firebase, archiviazione locale o entrambe.

Se ospiti il modello su Firebase, puoi aggiornarlo senza rilasciarlo una nuova versione dell'app e puoi usare Remote Config e A/B Testing per di pubblicare dinamicamente modelli diversi per insiemi di utenti diversi.

Se scegli di fornire il modello solo ospitandolo con Firebase e non puoi ridurne le dimensioni di download iniziali. Tieni presente, tuttavia, che se il modello non è integrato nella tua app, le funzionalità correlate al modello non saranno disponibili finché l'app non scarica l'app per la prima volta.

Se combini il modello con l'app, puoi assicurarti che le funzionalità di ML dell'app continuino a funzionare anche quando il modello ospitato su Firebase non è disponibile.

Configura l'origine di un modello ospitata da Firebase

Per utilizzare il modello ospitato in remoto, crea un oggetto AutoMLRemoteModel, specificando il nome assegnato al modello al momento della pubblicazione:

Swift

let remoteModel = AutoMLRemoteModel(
    name: "your_remote_model"  // The name you assigned in the Firebase console.
)

Objective-C

FIRAutoMLRemoteModel *remoteModel = [[FIRAutoMLRemoteModel alloc]
    initWithName:@"your_remote_model"];  // The name you assigned in the Firebase console.

Poi, avvia l'attività di download del modello, specificando le condizioni in cui vuoi consentire il download. Se il modello non è presente sul dispositivo o se una versione più recente del modello, l'attività scaricherà in modo asincrono modello di Firebase:

Swift

let downloadConditions = ModelDownloadConditions(
  allowsCellularAccess: true,
  allowsBackgroundDownloading: true
)

let downloadProgress = ModelManager.modelManager().download(
  remoteModel,
  conditions: downloadConditions
)

Objective-C

FIRModelDownloadConditions *downloadConditions =
    [[FIRModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                         allowsBackgroundDownloading:YES];

NSProgress *downloadProgress =
    [[FIRModelManager modelManager] downloadRemoteModel:remoteModel
                                             conditions:downloadConditions];

Molte app avviano l'attività di download nel codice di inizializzazione, ma puoi farlo in qualsiasi momento, prima di utilizzare il modello.

Configura un'origine del modello locale

Per raggruppare il modello con la tua app:

  1. Estrai il modello e i relativi metadati dall'archivio ZIP che hai scaricato dalla console Firebase in una cartella:
    your_model_directory
      |____dict.txt
      |____manifest.json
      |____model.tflite
    
    Tutti e tre i file devono trovarsi nella stessa cartella. Ti consigliamo di utilizzare i file come scaricati da te, senza modifiche (inclusi i nomi dei file).
  2. Copia la cartella nel tuo progetto Xcode, assicurandoti di selezionare In questo caso, crea riferimenti alle cartelle. Il file e i metadati del modello saranno incluse nell'app bundle e saranno disponibili in ML Kit.
  3. Crea un oggetto AutoMLLocalModel, specificando il percorso del manifest del modello file:

    Swift

    guard let manifestPath = Bundle.main.path(
        forResource: "manifest",
        ofType: "json",
        inDirectory: "your_model_directory"
    ) else { return true }
    let localModel = AutoMLLocalModel(manifestPath: manifestPath)
    

    Objective-C

    NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest"
                                                           ofType:@"json"
                                                      inDirectory:@"your_model_directory"];
    FIRAutoMLLocalModel *localModel = [[FIRAutoMLLocalModel alloc] initWithManifestPath:manifestPath];
    

Crea un etichettatore di immagini dal modello

Dopo aver configurato le origini del modello, crea un oggetto VisionImageLabeler da una di queste.

Se hai solo un modello aggregato localmente, crea un'etichetta dall'oggetto AutoMLLocalModel e configura la soglia del punteggio di affidabilità che vuoi richiedere (vedi Valutare il modello):

Swift

let options = VisionOnDeviceAutoMLImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = 0  // Evaluate your model in the Firebase console
                                 // to determine an appropriate value.
let labeler = Vision.vision().onDeviceAutoMLImageLabeler(options: options)

Objective-C

FIRVisionOnDeviceAutoMLImageLabelerOptions *options =
    [[FIRVisionOnDeviceAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = 0;  // Evaluate your model in the Firebase console
                                  // to determine an appropriate value.
FIRVisionImageLabeler *labeler =
    [[FIRVision vision] onDeviceAutoMLImageLabelerWithOptions:options];

Se il tuo modello è ospitato in remoto, dovrai verificare che sia stato scaricato prima di eseguirlo. Puoi controllare lo stato del download del modello utilizzando il metodo isModelDownloaded(remoteModel:) del gestore del modello.

Anche se devi solo confermare prima di eseguire l'etichettatore, se sia un modello ospitato in remoto sia uno in bundle locale, di eseguire questo controllo durante la creazione di un'istanza di VisionImageLabeler: create un etichettatore dal modello remoto, se è stato scaricato, e modello di machine learning.

Swift

var options: VisionOnDeviceAutoMLImageLabelerOptions?
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
  options = VisionOnDeviceAutoMLImageLabelerOptions(remoteModel: remoteModel)
} else {
  options = VisionOnDeviceAutoMLImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = 0  // Evaluate your model in the Firebase console
                                 // to determine an appropriate value.
let labeler = Vision.vision().onDeviceAutoMLImageLabeler(options: options)

Objective-C

VisionOnDeviceAutoMLImageLabelerOptions *options;
if ([[FIRModelManager modelManager] isModelDownloaded:remoteModel]) {
  options = [[FIRVisionOnDeviceAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
  options = [[FIRVisionOnDeviceAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = 0.0f;  // Evaluate your model in the Firebase console
                                     // to determine an appropriate value.
FIRVisionImageLabeler *labeler = [[FIRVision vision] onDeviceAutoMLImageLabelerWithOptions:options];

Se disponi solo di un modello ospitato in remoto, devi disattivare le relative funzionalità, ad esempio rendere non selezionabile o nascondere parte dell'interfaccia utente, fino a quando confermi che il modello è stato scaricato.

Puoi ottenere lo stato di download del modello collegando gli osservatori all'impostazione predefinita Centro notifiche. Assicurati di utilizzare un riferimento debole a self nell'osservatore perché i download possono richiedere del tempo e l'oggetto di origine può essere verrà liberato al termine del download. Ad esempio:

Swift

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Objective-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              FIRRemoteModel *model = note.userInfo[FIRModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[FIRModelDownloadUserInfoKeyError];
            }];

2. Prepara l'immagine di input

Quindi, per ogni immagine da etichettare, crea un oggetto VisionImage usando uno delle opzioni descritte in questa sezione e la passiamo a un'istanza VisionImageLabeler (descritto nella sezione successiva).

Crea un oggetto VisionImage utilizzando un UIImage o un CMSampleBufferRef.

Per usare un UIImage:

  1. Se necessario, ruota l'immagine in modo che imageOrientation è .up.
  2. Crea un oggetto VisionImage utilizzando l'oggetto ruotato correttamente UIImage. Non specificare alcun metadato di rotazione (l'impostazione predefinita) è necessario utilizzare il valore .topLeft.

    Swift

    let image = VisionImage(image: uiImage)

    Objective-C

    FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

Per usare un CMSampleBufferRef:

  1. Crea un oggetto VisionImageMetadata che specifichi l'orientamento dei dati dell'immagine contenuti buffer CMSampleBufferRef.

    Per ottenere l'orientamento dell'immagine:

    Swift

    func imageOrientation(
        deviceOrientation: UIDeviceOrientation,
        cameraPosition: AVCaptureDevice.Position
        ) -> VisionDetectorImageOrientation {
        switch deviceOrientation {
        case .portrait:
            return cameraPosition == .front ? .leftTop : .rightTop
        case .landscapeLeft:
            return cameraPosition == .front ? .bottomLeft : .topLeft
        case .portraitUpsideDown:
            return cameraPosition == .front ? .rightBottom : .leftBottom
        case .landscapeRight:
            return cameraPosition == .front ? .topRight : .bottomRight
        case .faceDown, .faceUp, .unknown:
            return .leftTop
        }
    }

    Objective-C

    - (FIRVisionDetectorImageOrientation)
        imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                               cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationLeftTop;
          } else {
            return FIRVisionDetectorImageOrientationRightTop;
          }
        case UIDeviceOrientationLandscapeLeft:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationBottomLeft;
          } else {
            return FIRVisionDetectorImageOrientationTopLeft;
          }
        case UIDeviceOrientationPortraitUpsideDown:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationRightBottom;
          } else {
            return FIRVisionDetectorImageOrientationLeftBottom;
          }
        case UIDeviceOrientationLandscapeRight:
          if (cameraPosition == AVCaptureDevicePositionFront) {
            return FIRVisionDetectorImageOrientationTopRight;
          } else {
            return FIRVisionDetectorImageOrientationBottomRight;
          }
        default:
          return FIRVisionDetectorImageOrientationTopLeft;
      }
    }

    Quindi, crea l'oggetto metadati:

    Swift

    let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
    let metadata = VisionImageMetadata()
    metadata.orientation = imageOrientation(
        deviceOrientation: UIDevice.current.orientation,
        cameraPosition: cameraPosition
    )

    Objective-C

    FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
    AVCaptureDevicePosition cameraPosition =
        AVCaptureDevicePositionBack;  // Set to the capture device you used.
    metadata.orientation =
        [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                     cameraPosition:cameraPosition];
  2. Crea un oggetto VisionImage utilizzando il metodo Oggetto CMSampleBufferRef e metadati di rotazione:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.metadata = metadata

    Objective-C

    FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
    image.metadata = metadata;

3. Esegui l'etichettatore delle immagini

Per etichettare gli oggetti in un'immagine, passa l'oggetto VisionImage all'elemento Metodo process() di VisionImageLabeler:

Swift

labeler.process(image) { labels, error in
    guard error == nil, let labels = labels else { return }

    // Task succeeded.
    // ...
}

Objective-C

[labeler
    processImage:image
      completion:^(NSArray<FIRVisionImageLabel *> *_Nullable labels, NSError *_Nullable error) {
        if (error != nil || labels == nil) {
          return;
        }

        // Task succeeded.
        // ...
      }];

Se l'etichettatura delle immagini va a buon fine, un array di oggetti VisionImageLabel verrà passato al gestore di completamento. Da ogni oggetto puoi ottenere informazioni su un elemento riconosciuto nell'immagine.

Ad esempio:

Swift

for label in labels {
    let labelText = label.text
    let confidence = label.confidence
}

Objective-C

for (FIRVisionImageLabel *label in labels) {
  NSString *labelText = label.text;
  NSNumber *confidence = label.confidence;
}

Suggerimenti per migliorare il rendimento in tempo reale

  • Regola le chiamate al rilevatore. Se un nuovo fotogramma disponibili mentre il rilevatore è in esecuzione, abbandona il frame.
  • Se utilizzi l'output del rilevatore per sovrapporre gli elementi grafici l'immagine di input, occorre prima ottenere il risultato da ML Kit, quindi eseguire il rendering dell'immagine e la sovrapposizione in un solo passaggio. In questo modo, esegui il rendering sulla superficie di visualizzazione solo una volta per ogni frame di input. Guarda previewOverlayView. e FIRDetectionOverlayView nell'app di esempio Showcase.