Esegui la migrazione dall'API del modello personalizzato precedente

La versione 22.0.2 della libreria firebase-ml-model-interpreter introduce un nuovo metodogetLatestModelFile(), che recupera la posizione sul dispositivo dei modelli personalizzati. Puoi utilizzare questo metodo per creare direttamente un oggetto Interpreter di TensorFlow Lite, che puoi utilizzare al posto del wrapper FirebaseModelInterpreter.

In futuro, questo è l'approccio preferito. Poiché la versione dell'interprete di TensorFlow Lite non è più accoppiata alla versione della libreria Firebase, hai più flessibilità per eseguire l'upgrade alle nuove versioni di TensorFlow Lite quando vuoi o utilizzare più facilmente le build di TensorFlow Lite personalizzate.

Questa pagina mostra come eseguire la migrazione dall'utilizzo di FirebaseModelInterpreter a Interpreter di TensorFlow Lite.

1. Aggiorna le dipendenze del progetto

Aggiorna le dipendenze del progetto in modo da includere la versione 22.0.2 della libreria firebase-ml-model-interpreter (o successiva) e la libreria tensorflow-lite:

Prima

implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.1")

Dopo

implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.2")
implementation("org.tensorflow:tensorflow-lite:2.0.0")

2. Creare un interprete TensorFlow Lite anziché FirebaseModelInterpreter

Anziché creare un FirebaseModelInterpreter, recupera la posizione del modello sul dispositivo con getLatestModelFile() e utilizzala per creare un Interpreter di TensorFlow Lite.

Prima

Kotlin+KTX

val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
val options = FirebaseModelInterpreterOptions.Builder(remoteModel).build()
val interpreter = FirebaseModelInterpreter.getInstance(options)

Java

FirebaseCustomRemoteModel remoteModel =
        new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelInterpreterOptions options =
        new FirebaseModelInterpreterOptions.Builder(remoteModel).build();
FirebaseModelInterpreter interpreter = FirebaseModelInterpreter.getInstance(options);

Dopo

Kotlin+KTX

val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
    .addOnCompleteListener { task ->
        val modelFile = task.getResult()
        if (modelFile != null) {
            // Instantiate an org.tensorflow.lite.Interpreter object.
            interpreter = Interpreter(modelFile)
        }
    }

Java

FirebaseCustomRemoteModel remoteModel =
        new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
        .addOnCompleteListener(new OnCompleteListener<File>() {
            @Override
            public void onComplete(@NonNull Task<File> task) {
                File modelFile = task.getResult();
                if (modelFile != null) {
                    // Instantiate an org.tensorflow.lite.Interpreter object.
                    Interpreter interpreter = new Interpreter(modelFile);
                }
            }
        });

3. Aggiorna il codice di preparazione di input e output

Con FirebaseModelInterpreter, puoi specificare le forme di input e output del modello passando un oggetto FirebaseModelInterpreter all'interprete quando lo esegui.FirebaseModelInputOutputOptions

Per l'interprete TensorFlow Lite, alloca invece oggetti ByteBuffer con le dimensioni giuste per l'input e l'output del modello.

Ad esempio, se il modello ha una forma di input di [1 224 224 3] valori float e una forma di output di [1 1000] valori float, apporta queste modifiche:

Prima

Kotlin+KTX

val inputOutputOptions = FirebaseModelInputOutputOptions.Builder()
    .setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 224, 224, 3))
    .setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 1000))
    .build()

val input = ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())
// Then populate with input data.

val inputs = FirebaseModelInputs.Builder()
    .add(input)
    .build()

interpreter.run(inputs, inputOutputOptions)
    .addOnSuccessListener { outputs ->
        // ...
    }
    .addOnFailureListener {
        // Task failed with an exception.
        // ...
    }

Java

FirebaseModelInputOutputOptions inputOutputOptions =
        new FirebaseModelInputOutputOptions.Builder()
                .setInputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 224, 224, 3})
                .setOutputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 1000})
                .build();

float[][][][] input = new float[1][224][224][3];
// Then populate with input data.

FirebaseModelInputs inputs = new FirebaseModelInputs.Builder()
        .add(input)
        .build();

interpreter.run(inputs, inputOutputOptions)
        .addOnSuccessListener(
                new OnSuccessListener<FirebaseModelOutputs>() {
                    @Override
                    public void onSuccess(FirebaseModelOutputs result) {
                        // ...
                    }
                })
        .addOnFailureListener(
                new OnFailureListener() {
                    @Override
                    public void onFailure(@NonNull Exception e) {
                        // Task failed with an exception
                        // ...
                    }
                });

Dopo

Kotlin+KTX

val inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val inputBuffer = ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())
// Then populate with input data.

val outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val outputBuffer = ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())

interpreter.run(inputBuffer, outputBuffer)

Java

int inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer inputBuffer =
        ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());
// Then populate with input data.

int outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer outputBuffer =
        ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());

interpreter.run(inputBuffer, outputBuffer);

4. Aggiorna il codice per la gestione dell'output

Infine, invece di ottenere l'output del modello con il metodo getOutput() dell'oggetto FirebaseModelOutputs, converti l'output ByteBuffer nella struttura più comoda per il tuo caso d'uso.

Ad esempio, se stai eseguendo la classificazione, potresti apportare modifiche come quelle riportate di seguito:

Prima

Kotlin+KTX

val output = result.getOutput(0)
val probabilities = output[0]
try {
    val reader = BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))
    for (probability in probabilities) {
        val label: String = reader.readLine()
        println("$label: $probability")
    }
} catch (e: IOException) {
    // File not found?
}

Java

float[][] output = result.getOutput(0);
float[] probabilities = output[0];
try {
    BufferedReader reader = new BufferedReader(
          new InputStreamReader(getAssets().open("custom_labels.txt")));
    for (float probability : probabilities) {
        String label = reader.readLine();
        Log.i(TAG, String.format("%s: %1.4f", label, probability));
    }
} catch (IOException e) {
    // File not found?
}

Dopo

Kotlin+KTX

modelOutput.rewind()
val probabilities = modelOutput.asFloatBuffer()
try {
    val reader = BufferedReader(
            InputStreamReader(assets.open("custom_labels.txt")))
    for (i in probabilities.capacity()) {
        val label: String = reader.readLine()
        val probability = probabilities.get(i)
        println("$label: $probability")
    }
} catch (e: IOException) {
    // File not found?
}

Java

modelOutput.rewind();
FloatBuffer probabilities = modelOutput.asFloatBuffer();
try {
    BufferedReader reader = new BufferedReader(
            new InputStreamReader(getAssets().open("custom_labels.txt")));
    for (int i = 0; i < probabilities.capacity(); i++) {
        String label = reader.readLine();
        float probability = probabilities.get(i);
        Log.i(TAG, String.format("%s: %1.4f", label, probability));
    }
} catch (IOException e) {
    // File not found?
}