Rozpoznawanie tekstu w obrazach za pomocą Firebase ML w iOS

Firebase ML do rozpoznawania tekstu na obrazach. Firebase ML ma Są to interfejsy API ogólnego przeznaczenia, odpowiednie do rozpoznawania tekstu na obrazach, tekstu znaku drogowego oraz interfejs API zoptymalizowany pod kątem rozpoznawania tekstu dokumenty.

.

Zanim zaczniesz

    Jeśli nie masz jeszcze w aplikacji dodanej Firebase, wykonaj przeczytaj przewodnik dla początkujących.

    Użyj menedżera pakietów Swift, aby zainstalować zależności Firebase i nimi zarządzać.

    1. W Xcode po otwarciu projektu aplikacji przejdź do File > Dodaj pakiety.
    2. Gdy pojawi się prośba, dodaj repozytorium SDK platform Apple Platform SDK Firebase:
    3.   https://github.com/firebase/firebase-ios-sdk.git
    4. Wybierz bibliotekę Firebase ML.
    5. Dodaj flagę -ObjC do sekcji Inne flagi łączące w ustawieniach kompilacji celu.
    6. Po zakończeniu Xcode automatycznie rozpocznie rozpoznawanie i pobieranie lub zależności w tle.

    Następnie skonfiguruj w aplikacji:

    1. W aplikacji zaimportuj Firebase:

      Swift

      import FirebaseMLModelDownloader

      Objective-C

      @import FirebaseMLModelDownloader;
  1. Jeśli w swoim projekcie nie włączono jeszcze interfejsów API działających w chmurze, zrób to. teraz:

    1. Otwórz Firebase ML Strona interfejsów API w konsoli Firebase.
    2. Jeśli Twój projekt nie został jeszcze przeniesiony na abonament Blaze, kliknij Aby to zrobić, przejdź na wyższą wersję. (Prośba o uaktualnienie wyświetli się tylko wtedy, gdy projekt nie jest objęty abonamentem Blaze).

      Tylko projekty na poziomie Blaze mogą korzystać z interfejsów API działających w chmurze.

    3. Jeśli interfejsy API działające w chmurze nie są włączone, kliknij Włącz działające w chmurze interfejsów API.
    .

Teraz możesz zacząć rozpoznawać tekst na obrazach.

Wytyczne dotyczące obrazu wejściowego

  • Aby usługa Firebase ML mogła prawidłowo rozpoznawać tekst, obrazy wejściowe muszą zawierać który jest reprezentowany przez wystarczającą ilość danych pikseli. najlepiej dla alfabetu łacińskiego tekstu, każdy znak powinien mieć co najmniej 16 x 16 pikseli. W przypadku języka chińskiego, tekstu japońskiego i koreańskiego, każdy powinien mieć rozmiar 24 x 24 piksele. Dla wszystkich języków zwykle nie ma funkcji w przypadku znaków większych niż 24 x 24 piksele.

    Na przykład obraz o wymiarach 640 x 480 może się sprawdzić do zeskanowania wizytówki zajmuje całą szerokość obrazu. Aby zeskanować dokument wydrukowany na na papierze w formacie letter, może być wymagany obraz o wymiarach 720 x 1280 pikseli.

  • Słaba ostrość obrazu może obniżyć dokładność rozpoznawania tekstu. Jeśli nim nie jesteś uzyskać akceptowalne wyniki, poproś użytkownika o ponowne przechwycenie obrazu.


Rozpoznawanie tekstu w obrazach

Aby rozpoznać tekst na obrazie, uruchom moduł rozpoznawania tekstu zgodnie z opisem poniżej.

1. Uruchom moduł rozpoznawania tekstu

Przekaż obraz jako UIImage lub CMSampleBufferRef do process(_:completion:), użytkownik VisionTextRecognizer :

  1. Pobierz instancję VisionTextRecognizer, wywołując cloudTextRecognizer:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudTextRecognizer(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudTextRecognizerOptions *options =
            [[FIRVisionCloudTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
  2. Aby można było wywołać Cloud Vision, obraz musi być sformatowany w formacie base64 ciągu znaków. Aby przetworzyć UIImage:

    Swift

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objective-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. Następnie przekaż obraz do metody process(_:completion:):

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
      // Recognized text
    }];

2. Wyodrębnianie tekstu z bloków rozpoznanego tekstu

Jeśli rozpoznawanie tekstu się powiedzie, zwróci błąd VisionText. Obiekt VisionText zawiera pełny tekst rozpoznane na obrazie i 0 lub więcej danych VisionTextBlock obiektów.

Każdy element VisionTextBlock to prostokątny blok tekstu, który zawiera zero lub więcej obiektów VisionTextLine. Co VisionTextLine obiekt nie zawiera żadnych obiektów VisionTextElement, które reprezentują słowa i elementy słowne (daty, liczby itd.).

Dla każdego obiektu VisionTextBlock, VisionTextLine i VisionTextElement dzięki czemu tekst zostanie rozpoznany w regionie, a współrzędne ograniczające i regionie.

Przykład:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockLanguages = block.recognizedLanguages
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for line in block.lines {
        let lineText = line.text
        let lineConfidence = line.confidence
        let lineLanguages = line.recognizedLanguages
        let lineCornerPoints = line.cornerPoints
        let lineFrame = line.frame
        for element in line.elements {
            let elementText = element.text
            let elementConfidence = element.confidence
            let elementLanguages = element.recognizedLanguages
            let elementCornerPoints = element.cornerPoints
            let elementFrame = element.frame
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages;
  NSArray<NSValue *> *blockCornerPoints = block.cornerPoints;
  CGRect blockFrame = block.frame;
  for (FIRVisionTextLine *line in block.lines) {
    NSString *lineText = line.text;
    NSNumber *lineConfidence = line.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages;
    NSArray<NSValue *> *lineCornerPoints = line.cornerPoints;
    CGRect lineFrame = line.frame;
    for (FIRVisionTextElement *element in line.elements) {
      NSString *elementText = element.text;
      NSNumber *elementConfidence = element.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages;
      NSArray<NSValue *> *elementCornerPoints = element.cornerPoints;
      CGRect elementFrame = element.frame;
    }
  }
}

Dalsze kroki


Rozpoznawanie tekstu na obrazach dokumentów

Aby rozpoznać tekst dokumentu, skonfiguruj i uruchom rozpoznawania tekstu dokumentu, zgodnie z opisem poniżej.

Opisany poniżej interfejs API rozpoznawania tekstu dokumentów zapewnia interfejs, ma ułatwić pracę z obrazami dokumentów. Pamiętaj jednak: Jeśli wolisz interfejs udostępniany przez interfejs API rozproszonego tekstu, możesz go zamiast skanować dokumenty przez skonfigurowanie modułu rozpoznawania tekstu w chmurze używają modelu gęstego.

Aby użyć interfejsu API rozpoznawania tekstu dokumentów:

1. Uruchom moduł rozpoznawania tekstu

Przekaż obraz jako UIImage lub CMSampleBufferRef do process(_:completion:), użytkownik VisionDocumentTextRecognizer :

  1. Pobierz instancję VisionDocumentTextRecognizer, wywołując cloudDocumentTextRecognizer:

    Swift

    let vision = Vision.vision()
    let textRecognizer = vision.cloudDocumentTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudDocumentTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudDocumentTextRecognizerOptions *options =
            [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
  2. Aby można było wywołać Cloud Vision, obraz musi być sformatowany w formacie base64 ciągu znaków. Aby przetworzyć UIImage:

    Swift

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objective-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. Następnie przekaż obraz do metody process(_:completion:):

    Swift

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }

    Objective-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionDocumentText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
        // Recognized text
    }];

2. Wyodrębnianie tekstu z bloków rozpoznanego tekstu

Jeśli rozpoznawanie tekstu się powiedzie, zwróci błąd VisionDocumentText. Obiekt VisionDocumentText zawiera pełny tekst rozpoznany na obrazie oraz hierarchię obiektów, odzwierciedlają strukturę rozpoznanego dokumentu:

W przypadku każdej wartości VisionDocumentTextBlock, VisionDocumentTextParagraph, VisionDocumentTextWord i VisionDocumentTextSymbol, możesz uzyskać tekstu rozpoznawanego w regionie oraz jego współrzędnych geograficznych.

Przykład:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockRecognizedLanguages = block.recognizedLanguages
    let blockBreak = block.recognizedBreak
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for paragraph in block.paragraphs {
        let paragraphText = paragraph.text
        let paragraphConfidence = paragraph.confidence
        let paragraphRecognizedLanguages = paragraph.recognizedLanguages
        let paragraphBreak = paragraph.recognizedBreak
        let paragraphCornerPoints = paragraph.cornerPoints
        let paragraphFrame = paragraph.frame
        for word in paragraph.words {
            let wordText = word.text
            let wordConfidence = word.confidence
            let wordRecognizedLanguages = word.recognizedLanguages
            let wordBreak = word.recognizedBreak
            let wordCornerPoints = word.cornerPoints
            let wordFrame = word.frame
            for symbol in word.symbols {
                let symbolText = symbol.text
                let symbolConfidence = symbol.confidence
                let symbolRecognizedLanguages = symbol.recognizedLanguages
                let symbolBreak = symbol.recognizedBreak
                let symbolCornerPoints = symbol.cornerPoints
                let symbolFrame = symbol.frame
            }
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (FIRVisionDocumentTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages;
  FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak;
  CGRect blockFrame = block.frame;
  for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) {
    NSString *paragraphText = paragraph.text;
    NSNumber *paragraphConfidence = paragraph.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages;
    FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak;
    CGRect paragraphFrame = paragraph.frame;
    for (FIRVisionDocumentTextWord *word in paragraph.words) {
      NSString *wordText = word.text;
      NSNumber *wordConfidence = word.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages;
      FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak;
      CGRect wordFrame = word.frame;
      for (FIRVisionDocumentTextSymbol *symbol in word.symbols) {
        NSString *symbolText = symbol.text;
        NSNumber *symbolConfidence = symbol.confidence;
        NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages;
        FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak;
        CGRect symbolFrame = symbol.frame;
      }
    }
  }
}

Dalsze kroki