खुद को ट्रेनिंग देने के बाद ऐसा करने के लिए, AutoML Vision Edge मॉडल का इस्तेमाल करें. इमेज.
शुरू करने से पहले
- अगर आपने अब तक ऐसा नहीं किया है, तो अपने Android प्रोजेक्ट में Firebase जोड़ें.
- अपने मॉड्यूल में एमएल किट Android लाइब्रेरी के लिए डिपेंडेंसी जोड़ें
(ऐप्लिकेशन-लेवल) Gradle फ़ाइल (आम तौर पर
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5' }
1. मॉडल लोड करें
ML Kit की मदद से, डिवाइस पर AutoML से जनरेट किए गए मॉडल चलाए जा सकते हैं. हालांकि, आपके पास ये विकल्प हैं ML Kit को कॉन्फ़िगर करें, ताकि आप Firebase से रिमोट तरीके से अपना मॉडल लोड कर सकें. इसके लिए, इन कमांड का इस्तेमाल करें: या दोनों का इस्तेमाल कर सकते हैं.
मॉडल को Firebase पर होस्ट करके, मॉडल को रिलीज़ किए बिना अपडेट किया जा सकता है आया है और आप इन कामों के लिए Remote Config और A/B Testing का इस्तेमाल कर सकते हैं उपयोगकर्ताओं के अलग-अलग सेट को डाइनैमिक तौर पर अलग-अलग मॉडल दिखाते हैं.
अगर आपने मॉडल को Firebase के साथ होस्ट करके सिर्फ़ मॉडल उपलब्ध कराने का विकल्प चुना है, तो इसे अपने ऐप्लिकेशन के साथ बंडल में जोड़ें, तो डाउनलोड के दौरान ऐप्लिकेशन के साइज़ को कम किया जा सकता है. हालांकि, ध्यान रखें कि अगर मॉडल को आपके ऐप्लिकेशन के साथ बंडल नहीं किया गया है, तो मॉडल से जुड़ी सुविधाएं तब तक उपलब्ध नहीं होंगी, जब तक आपका ऐप्लिकेशन मॉडल को पहली बार इस्तेमाल किया है.
मॉडल को अपने ऐप्लिकेशन के साथ बंडल करके, अपने ऐप्लिकेशन की एमएल (मशीन लर्निंग) सुविधाओं को पक्का किया जा सकता है Firebase से होस्ट किया गया मॉडल उपलब्ध न होने पर भी काम करता है.
Firebase से होस्ट किए गए मॉडल सोर्स को कॉन्फ़िगर करना
रिमोट तरीके से होस्ट किए गए मॉडल का इस्तेमाल करने के लिए, FirebaseAutoMLRemoteModel
ऑब्जेक्ट बनाएं,
वह नाम दर्ज करना होगा जिसे आपने मॉडल को प्रकाशित करते समय असाइन किया था:
Java
// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();
Kotlin+KTX
// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()
इसके बाद, उन शर्तों को तय करते हुए मॉडल डाउनलोड टास्क शुरू करें को डाउनलोड करने की अनुमति देनी है. अगर मॉडल डिवाइस पर नहीं है या नया डिवाइस है, तो मॉडल का वर्शन उपलब्ध है, तो टास्क एसिंक्रोनस रूप से Firebase से मिला मॉडल:
Java
FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener(new OnCompleteListener<Void>() {
@Override
public void onComplete(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin+KTX
val conditions = FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Success.
}
कई ऐप्लिकेशन अपने इनिशलाइज़ेशन कोड में डाउनलोड का काम शुरू करते हैं, लेकिन आपके द्वारा मॉडल का उपयोग करने की आवश्यकता से पहले किसी भी समय ऐसा कर सकते है.
लोकल मॉडल सोर्स कॉन्फ़िगर करना
मॉडल को अपने ऐप्लिकेशन के साथ बंडल करने के लिए:
- डाउनलोड किए गए ZIP फ़ॉर्मैट वाले संग्रह से मॉडल और उसका मेटाडेटा निकालें Firebase कंसोल से. हमारा सुझाव है कि आप फ़ाइलों को डाउनलोड करते ही उनका इस्तेमाल करें उन्हें बिना कोई बदलाव किए (फ़ाइल नाम भी शामिल हैं).
-
अपने ऐप्लिकेशन पैकेज में अपने मॉडल और उसकी मेटाडेटा फ़ाइलों को शामिल करें:
- अगर आपके प्रोजेक्ट में कोई ऐसेट फ़ोल्डर नहीं है, तो एक ऐसेट फ़ोल्डर बनाएं
app/
फ़ोल्डर पर राइट-क्लिक करें, फिर नया > फ़ोल्डर > ऐसेट फ़ोल्डर. - मॉडल शामिल करने के लिए ऐसेट फ़ोल्डर के नीचे एक सब-फ़ोल्डर बनाएं फ़ाइलें शामिल हैं.
model.tflite
,dict.txt
, औरmanifest.json
को सब-फ़ोल्डर में ले जाएं (सभी तीन फ़ाइलें फ़ाइल फ़ोल्डर) खोलें.
- अगर आपके प्रोजेक्ट में कोई ऐसेट फ़ोल्डर नहीं है, तो एक ऐसेट फ़ोल्डर बनाएं
- यह पक्का करने के लिए कि अपने ऐप्लिकेशन की
build.gradle
फ़ाइल में यह जोड़ें ऐप्लिकेशन बनाते समय, Gradle, मॉडल फ़ाइल को कंप्रेस नहीं करता: मॉडल फ़ाइल, ऐप्लिकेशन के पैकेज में शामिल की जाएगी और ML किट में उपलब्ध होगी रॉ ऐसेट के तौर पर काम करता है.android { // ... aaptOptions { noCompress "tflite" } }
FirebaseAutoMLLocalModel
ऑब्जेक्ट बनाएं, जिसमें मॉडल मेनिफ़ेस्ट का पाथ बताया गया हो फ़ाइल:Java
FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build();
Kotlin+KTX
val localModel = FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build()
अपने मॉडल से इमेज लेबलर बनाएं
अपने मॉडल सोर्स को कॉन्फ़िगर करने के बाद, FirebaseVisionImageLabeler
बनाएं
ऑब्जेक्ट को ढूंढने में मदद मिलती है.
अगर आपके पास केवल स्थानीय रूप से बंडल किया गया मॉडल है, तो बस अपने
FirebaseAutoMLLocalModel
ऑब्जेक्ट और कॉन्फ़िडेंस स्कोर के थ्रेशोल्ड को कॉन्फ़िगर करें
(अपने मॉडल का आकलन करें सेक्शन देखें):
Java
FirebaseVisionImageLabeler labeler;
try {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build();
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// ...
}
Kotlin+KTX
val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
अगर आपके पास रिमोट तौर पर होस्ट किया गया मॉडल है, तो आपको यह देखना होगा कि
डाउनलोड करने की सुविधा देता है. मॉडल के डाउनलोड होने की स्थिति देखी जा सकती है
टास्क बनाने के लिए, मॉडल मैनेजर के isModelDownloaded()
तरीके का इस्तेमाल करें.
हालांकि, लेबलर को चलाने से पहले आपको इसकी पुष्टि करनी होगी, अगर रिमोट तौर पर होस्ट किया गया मॉडल और लोकल-बंडल्ड मॉडल, दोनों होने चाहिए, तो इससे इमेज लेबलर को इंस्टैंशिएट करते समय यह जांच करने का ध्यान रखें: अगर लेबलर को रिमोट मॉडल से डाउनलोड किया गया है, तो वह नहीं करते हैं.
Java
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
}
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate threshold.
.build();
FirebaseVisionImageLabeler labeler;
try {
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// Error.
}
}
});
Kotlin+KTX
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
} else {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Firebase console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}
अगर आपके पास सिर्फ़ रिमोट तौर पर होस्ट किया गया मॉडल है, तो आपको मॉडल से जुड़ी सेटिंग बंद करनी चाहिए
फ़ंक्शनलिटी—उदाहरण के लिए, आपके यूज़र इंटरफ़ेस (यूआई) के किसी हिस्से को धूसर करना या छिपाना—जब तक
तो यह पुष्टि की जाती है कि मॉडल डाउनलोड किया गया है. लिसनर को अटैच करके ऐसा किया जा सकता है
मॉडल मैनेजर की download()
विधि में:
Java
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin+KTX
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. इनपुट इमेज तैयार करें
इसके बाद, हर उस इमेज के लिए FirebaseVisionImage
ऑब्जेक्ट बनाएं जिसे आपको लेबल करना है
इस सेक्शन में दिए गए विकल्पों में से किसी एक का इस्तेमाल करके और उसे
FirebaseVisionImageLabeler
(अगले सेक्शन में बताया गया है).
आप किसी media.Image
ऑब्जेक्ट से FirebaseVisionImage
ऑब्जेक्ट बना सकते हैं,
फ़ाइल, बाइट अरे या किसी Bitmap
ऑब्जेक्ट पर:
-
किसी
FirebaseVisionImage
media.Image
ऑब्जेक्ट, जैसे कि किसी ऑब्जेक्ट से इमेज कैप्चर करते समय करने के लिए,media.Image
ऑब्जेक्ट को पास करें और चित्र केFirebaseVisionImage.fromMediaImage()
पर घुमाया गया.अगर आपको CameraX लाइब्रेरी,
OnImageCapturedListener
, औरImageAnalysis.Analyzer
क्लास, रोटेशन वैल्यू को कैलकुलेट करती हैं आपके लिए है, इसलिए आपको रोटेशन को सिर्फ़ एक ML किट के रूप में बदलना होगा कॉल करने से पहलेROTATION_
कॉन्सटेंटFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
अगर इमेज को घुमाने की सुविधा देने वाली कैमरा लाइब्रेरी का इस्तेमाल नहीं किया जाता है, तो डिवाइस के रोटेशन और कैमरे के ओरिएंटेशन से इसका हिसाब लगा सकता है डिवाइस में सेंसर:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
इसके बाद,
media.Image
ऑब्जेक्ट को पास करें औरFirebaseVisionImage.fromMediaImage()
का रोटेशन मान:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- किसी फ़ाइल यूआरआई से
FirebaseVisionImage
ऑब्जेक्ट बनाने के लिए, पास करें ऐप्लिकेशन का कॉन्टेक्स्ट और फ़ाइल यूआरआई कोFirebaseVisionImage.fromFilePath()
. यह तब काम आता है, जब उपयोगकर्ता को चुनने का प्रॉम्प्ट भेजने के लिए,ACTION_GET_CONTENT
इंटेंट का इस्तेमाल करें अपने गैलरी ऐप्लिकेशन से मिली इमेज शामिल करेगा.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- किसी
FirebaseVisionImage
ByteBuffer
या बाइट अरे, पहले चित्र की गणना करेंmedia.Image
इनपुट के लिए ऊपर बताए गए तरीके से रोटेशन.इसके बाद,
FirebaseVisionImageMetadata
ऑब्जेक्ट बनाएं जिसमें इमेज की ऊंचाई, चौड़ाई, कलर एन्कोडिंग फ़ॉर्मैट, और रोटेशन:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
बफ़र या अरे और मेटाडेटा ऑब्जेक्ट का इस्तेमाल करके,
FirebaseVisionImage
ऑब्जेक्ट:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- किसी
FirebaseVisionImage
Bitmap
ऑब्जेक्ट:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
ऑब्जेक्ट के ज़रिए दिखाई जाने वाली इमेज में सीधा होना चाहिए, इसके लिए किसी अतिरिक्त रोटेशन की आवश्यकता नहीं होगी.
3. इमेज लेबलर चलाएं
किसी इमेज में ऑब्जेक्ट को लेबल करने के लिए, FirebaseVisionImage
ऑब्जेक्ट को
FirebaseVisionImageLabeler
का processImage()
तरीका.
Java
labeler.processImage(image)
.addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
@Override
public void onSuccess(List<FirebaseVisionImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin+KTX
labeler.processImage(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
इमेज को लेबल करने की प्रोसेस पूरी होने पर, FirebaseVisionImageLabel
ऑब्जेक्ट का कलेक्शन दिखेगा
उसे सक्सेस लिसनर को भेज दिया जाएगा. हर ऑब्जेक्ट से, आपको
इमेज में पहचानी गई सुविधा के बारे में जानकारी.
उदाहरण के लिए:
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
float confidence = label.getConfidence();
}
Kotlin+KTX
for (label in labels) {
val text = label.text
val confidence = label.confidence
}
रीयल-टाइम परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह
- डिटेक्टर को कॉल थ्रॉटल करें. अगर कोई नया वीडियो फ़्रेम डिटेक्टर के चलने के दौरान उपलब्ध होने पर, फ़्रेम छोड़ें.
- अगर ग्राफ़िक को ओवरले करने के लिए, डिटेक्टर के आउटपुट का इस्तेमाल किया जा रहा है इनपुट इमेज को चुनने के बाद, पहले एमएल किट से नतीजा पाएं. इसके बाद, इमेज को रेंडर करें और ओवरले को एक ही चरण में पूरा करें. ऐसा करके, डिसप्ले सरफ़ेस पर रेंडर हो जाता है हर इनपुट फ़्रेम के लिए सिर्फ़ एक बार.
-
Camera2 API का इस्तेमाल करने पर, इमेज यहां कैप्चर करें
ImageFormat.YUV_420_888
फ़ॉर्मैट.अगर पुराने Camera API का इस्तेमाल किया जा रहा है, तो इमेज यहां कैप्चर करें
ImageFormat.NV21
फ़ॉर्मैट.