Po wytrenowaniu model z użyciem AutoML Vision Edge, możesz go używać w swojej aplikacji do oznaczania etykietami obrazów.
Zanim zaczniesz
- Jeśli jeszcze nie masz tego za sobą, dodaj Firebase do swojego projektu na Androida.
- Dodaj do modułu zależności między bibliotekami ML Kit na Androida
Plik Gradle (na poziomie aplikacji) (zwykle
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5' }
1. Wczytaj model
ML Kit uruchamia modele wygenerowane przez AutoML na urządzeniu. Możesz jednak: skonfiguruj ML Kit, aby ładował Twój model zdalnie z Firebase, pamięci lokalnej lub obu tych metod.
Hostując model w Firebase, możesz go aktualizować bez konieczności jego publikowania nową wersję aplikacji. Możesz używać Remote Config i A/B Testing, dynamicznie udostępniać różne modele różnym grupom użytkowników.
Jeśli zdecydujesz się udostępniać model tylko poprzez hosting w Firebase, a nie pakietu z aplikacją, możesz zmniejszyć początkowy rozmiar pobieranej aplikacji. Pamiętaj jednak, że jeśli do aplikacji nie dołączony jest model, funkcje związane z modelem będą dostępne dopiero po pobraniu przez aplikację z użyciem modelu po raz pierwszy.
Jeśli połączysz model z aplikacją, będziesz mieć pewność, że funkcje ML w aplikacji będą działać. działają też wtedy, gdy model hostowany przez Firebase jest niedostępny.
Skonfiguruj źródło modelu hostowanego w Firebase
Aby używać modelu hostowanego zdalnie, utwórz obiekt FirebaseAutoMLRemoteModel
,
określając nazwę przypisaną do modelu podczas jego publikowania:
Java
// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();
Kotlin+KTX
// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()
Następnie uruchom zadanie pobierania modelu, określając warunki, które którym chcesz zezwolić na pobieranie. Jeśli nie ma modelu na urządzeniu lub jest on nowszy gdy dostępna będzie wersja modelu, zadanie asynchronicznie pobierze model z Firebase:
Java
FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener(new OnCompleteListener<Void>() {
@Override
public void onComplete(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin+KTX
val conditions = FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Success.
}
Wiele aplikacji rozpoczyna zadanie pobierania w kodzie inicjowania, możesz to zrobić w dowolnym momencie, zanim trzeba będzie skorzystać z modelu.
Skonfiguruj źródło modelu lokalnego
Aby połączyć model z aplikacją:
- Wyodrębnij model i jego metadane z pobranego archiwum ZIP z konsoli Firebase. Zalecamy korzystanie z pobranych plików bez modyfikacji (łącznie z nazwami plików).
-
Umieść model i jego pliki metadanych w pakiecie aplikacji:
- Jeśli w projekcie nie masz folderu zasobów, utwórz go
kliknij prawym przyciskiem myszy folder
app/
, a następnie kliknij Nowe > Folder > Folder Zasoby. - W folderze zasobów utwórz podfolder, w którym umieścisz model. .
- Skopiuj pliki
model.tflite
,dict.txt
imanifest.json
do podfolderu (wszystkie 3 pliki muszą się znajdować w folderze ten sam folder).
- Jeśli w projekcie nie masz folderu zasobów, utwórz go
kliknij prawym przyciskiem myszy folder
- Dodaj te fragmenty do pliku
build.gradle
z informacjami o aplikacji, aby mieć pewność, że: Gradle nie kompresuje pliku modelu podczas tworzenia aplikacji: Plik z modelem zostanie dołączony do pakietu aplikacji i będzie dostępny dla ML Kit jako nieprzetworzony zasób.android { // ... aaptOptions { noCompress "tflite" } }
- Utwórz obiekt
FirebaseAutoMLLocalModel
, określając ścieżkę do pliku manifestu modelu plik:Java
FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build();
Kotlin+KTX
val localModel = FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build()
Tworzenie osoby oznaczającej obrazy na podstawie modelu
Po skonfigurowaniu źródeł modelu utwórz FirebaseVisionImageLabeler
lub obiektu z jednego z nich.
Jeśli masz tylko model scalony lokalnie, po prostu utwórz osobę oznaczającą etykietami na podstawie
FirebaseAutoMLLocalModel
obiekt i skonfiguruj próg wskaźnika ufności
które chcesz określić (zobacz Ocena modelu):
Java
FirebaseVisionImageLabeler labeler;
try {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build();
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// ...
}
Kotlin+KTX
val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
Jeśli masz model hostowany zdalnie, musisz sprawdzić, czy został
pobrane przed uruchomieniem. Stan pobierania modelu możesz sprawdzić
za pomocą metody isModelDownloaded()
menedżera modeli.
Chociaż trzeba to potwierdzić tylko przed uruchomieniem osoby oznaczającej etykietami, korzystają zarówno z modelu hostowanego zdalnie, jak i z pakietu lokalnego, może to sprawić, warto przeprowadzić tę kontrolę przy tworzeniu wystąpienia narzędzia do etykietowania obrazów: utwórz z modelu zdalnego, jeśli został on pobrany, oraz z modelu lokalnego w inny sposób.
Java
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
}
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate threshold.
.build();
FirebaseVisionImageLabeler labeler;
try {
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// Error.
}
}
});
Kotlin+KTX
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
} else {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Firebase console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}
Jeśli masz tylko model hostowany zdalnie, wyłącz powiązany z nim model
funkcji – np. wyszarzenia lub ukrycia części interfejsu –
potwierdzasz, że model został pobrany. Aby to zrobić, dołącz detektor
do metody download()
menedżera modeli:
Java
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin+KTX
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. Przygotowywanie obrazu wejściowego
Utwórz obiekt FirebaseVisionImage
dla każdego obrazu, który chcesz oznaczyć etykietą.
za pomocą jednej z opcji opisanych w tej sekcji i przekazać ją do instancji
FirebaseVisionImageLabeler
(opisane w następnej sekcji).
Obiekt FirebaseVisionImage
możesz utworzyć z obiektu media.Image
,
zapisany na urządzeniu, tablicę bajtów lub obiekt Bitmap
:
-
Aby utworzyć obiekt
FirebaseVisionImage
na podstawiemedia.Image
, np. podczas przechwytywania obrazu z z aparatu urządzenia, przekazać obiektmedia.Image
oraz w kierunkuFirebaseVisionImage.fromMediaImage()
.Jeśli używasz tagu CameraX,
OnImageCapturedListener
orazImageAnalysis.Analyzer
klasy obliczają wartość rotacji więc wystarczy zmienić rotację na jeden z zestawów ML Kit StałyROTATION_
przed nawiązaniem połączeniaFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Jeśli nie korzystasz z biblioteki aparatu zapewniającej obrót obrazu, może go obliczyć na podstawie obrotu urządzenia i orientacji aparatu czujnik w urządzeniu:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Następnie przekaż obiekt
media.Image
oraz wartość rotacji doFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Aby utworzyć obiekt
FirebaseVisionImage
na podstawie identyfikatora URI pliku, przekaż kontekst aplikacji i identyfikator URI plikuFirebaseVisionImage.fromFilePath()
Jest to przydatne, gdy użyj intencjiACTION_GET_CONTENT
, aby zachęcić użytkownika do wyboru obraz z aplikacji Galeria.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Aby utworzyć obiekt
FirebaseVisionImage
na podstawieByteBuffer
lub tablicy bajtów, najpierw oblicz wartość obrazu w sposób opisany powyżej dla danych wejściowychmedia.Image
.Następnie utwórz obiekt
FirebaseVisionImageMetadata
określającą wysokość, szerokość i format kodowania kolorów obrazu i rotacja:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Za pomocą bufora lub tablicy oraz obiektu metadanych utwórz
FirebaseVisionImage
obiekt:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Aby utworzyć obiekt
FirebaseVisionImage
na podstawie ObiektBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
musi być pionowo bez konieczności dodatkowego obracania.
3. Uruchamianie oznaczania obrazów
Aby oznaczyć etykietami obiekty na obrazie, przekaż obiekt FirebaseVisionImage
do funkcji
Metoda processImage()
użytkownika FirebaseVisionImageLabeler
.
Java
labeler.processImage(image)
.addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
@Override
public void onSuccess(List<FirebaseVisionImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin+KTX
labeler.processImage(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
Jeśli oznaczenie obrazów zostanie oznaczone etykietami, tablica FirebaseVisionImageLabel
obiektów
zostanie przekazana do detektora sukcesu. Z każdego obiektu możesz uzyskać
informacje o obiekcie rozpoznanym na zdjęciu.
Przykład:
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
float confidence = label.getConfidence();
}
Kotlin+KTX
for (label in labels) {
val text = label.text
val confidence = label.confidence
}
Wskazówki dotyczące poprawy skuteczności w czasie rzeczywistym
- Ogranicz wywołania do detektora. Jeśli nowa klatka wideo dostępnych, gdy detektor jest uruchomiony, upuść ramkę.
- Jeśli używasz danych wyjściowych detektora do nakładania grafiki na obrazu wejściowego, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz i nakładanie nakładek w jednym kroku. W ten sposób renderowanie na powierzchni tylko raz na każdą ramkę wejściową.
-
Jeśli korzystasz z interfejsu API Camera2, rób zdjęcia w Format:
ImageFormat.YUV_420_888
.Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w Format:
ImageFormat.NV21
.