Check out what’s new from Firebase at Google I/O 2022. Learn more

Rozpoznawaj tekst na obrazach za pomocą ML Kit na Androida

Możesz użyć ML Kit do rozpoznawania tekstu na obrazach. ML Kit ma zarówno interfejs API ogólnego przeznaczenia, odpowiedni do rozpoznawania tekstu na obrazach, taki jak tekst znaku ulicznego, oraz interfejs API zoptymalizowany do rozpoznawania tekstu dokumentów. Interfejs API ogólnego przeznaczenia ma zarówno modele na urządzeniu, jak i w chmurze. Rozpoznawanie tekstu dokumentu jest dostępne tylko jako model oparty na chmurze. Zobacz przegląd , aby porównać modele w chmurze i na urządzeniu.

Zanim zaczniesz

  1. Jeśli jeszcze tego nie zrobiłeś, dodaj Firebase do swojego projektu na Androida .
  2. Dodaj zależności dla bibliotek ML Kit dla systemu Android do pliku Gradle modułu (na poziomie aplikacji) (zwykle app/build.gradle ):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
    
  3. Opcjonalne, ale zalecane : jeśli korzystasz z interfejsu API na urządzeniu, skonfiguruj aplikację tak, aby automatycznie pobierała model ML na urządzenie po zainstalowaniu aplikacji ze Sklepu Play.

    Aby to zrobić, dodaj następującą deklarację do pliku AndroidManifest.xml swojej aplikacji:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    
    Jeśli nie włączysz pobierania modelu w czasie instalacji, model zostanie pobrany przy pierwszym uruchomieniu detektora na urządzeniu. Żądania złożone przed zakończeniem pobierania nie przyniosą żadnych wyników.
  4. Jeśli chcesz korzystać z modelu opartego na chmurze, a nie masz jeszcze włączonych interfejsów API opartych na chmurze dla swojego projektu, zrób to teraz:

    1. Otwórz stronę ML Kit APIs w konsoli Firebase.
    2. Jeśli Twój projekt nie został jeszcze uaktualniony do planu cenowego Blaze, kliknij Uaktualnij , aby to zrobić. (Zostaniesz poproszony o uaktualnienie tylko wtedy, gdy Twój projekt nie jest objęty planem Blaze).

      Tylko projekty na poziomie Blaze mogą korzystać z interfejsów API opartych na chmurze.

    3. Jeśli interfejsy API oparte na chmurze nie są jeszcze włączone, kliknij Włącz interfejsy API oparte na chmurze .

    Jeśli chcesz używać tylko modelu na urządzeniu, możesz pominąć ten krok.

Teraz możesz zacząć rozpoznawać tekst na obrazach.

Wskazówki dotyczące obrazu wejściowego

  • Aby zestaw ML Kit mógł dokładnie rozpoznać tekst, obrazy wejściowe muszą zawierać tekst reprezentowany przez wystarczającą ilość danych pikseli. Idealnie, w przypadku tekstu łacińskiego, każdy znak powinien mieć co najmniej 16x16 pikseli. W przypadku tekstu w języku chińskim, japońskim i koreańskim (obsługiwane tylko przez interfejsy API oparte na chmurze) każdy znak powinien mieć wymiary 24 x 24 piksele. W przypadku wszystkich języków nie ma na ogół żadnej korzyści z dokładności w przypadku znaków większych niż 24x24 piksele.

    Na przykład obraz 640x480 może dobrze się sprawdzić w przypadku wizytówki zajmującej całą szerokość obrazu. Aby zeskanować dokument wydrukowany na papierze formatu Letter, może być wymagany obraz o wymiarach 720x1280 pikseli.

  • Słaba ostrość obrazu może zaszkodzić dokładności rozpoznawania tekstu. Jeśli nie uzyskujesz zadowalających wyników, poproś użytkownika o ponowne przechwycenie obrazu.

  • Jeśli rozpoznajesz tekst w aplikacji działającej w czasie rzeczywistym, możesz również wziąć pod uwagę ogólne wymiary obrazów wejściowych. Mniejsze obrazy można przetwarzać szybciej, więc aby zmniejszyć opóźnienia, przechwytuj obrazy w niższych rozdzielczościach (pamiętając o powyższych wymaganiach dotyczących dokładności) i upewnij się, że tekst zajmuje jak najwięcej obrazu. Zobacz także Wskazówki dotyczące poprawy wydajności w czasie rzeczywistym .


Rozpoznawaj tekst na obrazach

Aby rozpoznać tekst na obrazie przy użyciu modelu na urządzeniu lub w chmurze, uruchom aparat rozpoznawania tekstu zgodnie z poniższym opisem.

1. Uruchom aparat rozpoznawania tekstu

Aby rozpoznać tekst w obrazie, utwórz obiekt FirebaseVisionImage z Bitmap , media.Image , ByteBuffer , tablicy bajtów lub pliku na urządzeniu. Następnie przekaż obiekt FirebaseVisionImage do metody FirebaseVisionTextRecognizer processImage .

  1. Utwórz obiekt FirebaseVisionImage z obrazu.

    • Aby utworzyć obiekt FirebaseVisionImage z obiektu media.Image , na przykład podczas przechwytywania obrazu z aparatu urządzenia, przekaż obiekt media.Image i obrót obrazu do funkcji FirebaseVisionImage.fromMediaImage() .

      Jeśli używasz biblioteki CameraX , klasy OnImageCapturedListener i ImageAnalysis.Analyzer obliczają wartość obrotu za Ciebie, więc wystarczy przekonwertować obrót na jedną ze stałych ROTATION_ ML Kit przed wywołaniem FirebaseVisionImage.fromMediaImage() :

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      Jeśli nie korzystasz z biblioteki aparatu, która podaje obrót obrazu, możesz to obliczyć na podstawie obrotu urządzenia i orientacji czujnika aparatu w urządzeniu:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Następnie przekaż obiekt media.Image i wartość obrotu do FirebaseVisionImage.fromMediaImage() :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Aby utworzyć obiekt FirebaseVisionImage z identyfikatora URI pliku, przekaż kontekst aplikacji i identyfikator URI pliku do FirebaseVisionImage.fromFilePath() . Jest to przydatne, gdy używasz intencji ACTION_GET_CONTENT , aby skłonić użytkownika do wybrania obrazu z jego aplikacji galerii.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Aby utworzyć obiekt FirebaseVisionImage z ByteBuffer lub tablicy bajtów, najpierw oblicz obrót obrazu zgodnie z powyższym opisem dla danych wejściowych media.Image .

      Następnie utwórz obiekt FirebaseVisionImageMetadata zawierający wysokość, szerokość, format kodowania kolorów i obrót obrazu:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Użyj buforu lub tablicy oraz obiektu metadanych, aby utworzyć obiekt FirebaseVisionImage :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Aby utworzyć obiekt FirebaseVisionImage z obiektu Bitmap :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Obraz reprezentowany przez obiekt Bitmap musi być ustawiony pionowo, bez konieczności dodatkowego obracania.

  2. Pobierz wystąpienie FirebaseVisionTextRecognizer .

    Aby użyć modelu na urządzeniu:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getOnDeviceTextRecognizer();

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .onDeviceTextRecognizer

    Aby skorzystać z modelu opartego na chmurze:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();
    

    Kotlin+KTX

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    
  3. Na koniec przekaż obraz do metody processImage :

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin+KTX

    val result = detector.processImage(image)
            .addOnSuccessListener { firebaseVisionText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Wyodrębnij tekst z bloków rozpoznanego tekstu

Jeśli operacja rozpoznawania tekstu się powiedzie, obiekt FirebaseVisionText zostanie przekazany do detektora sukcesu. Obiekt FirebaseVisionText zawiera pełny tekst rozpoznany na obrazie oraz zero lub więcej obiektów TextBlock .

Każdy TextBlock reprezentuje prostokątny blok tekstu, który zawiera zero lub więcej obiektów Line . Każdy obiekt Line zawiera zero lub więcej obiektów Element , które reprezentują słowa i elementy słowopodobne (daty, liczby itd.).

Dla każdego obiektu TextBlock , Line i Element można uzyskać tekst rozpoznawany w regionie oraz współrzędne ograniczające regionu.

Na przykład:

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Wskazówki dotyczące poprawy wydajności w czasie rzeczywistym

Jeśli chcesz używać modelu na urządzeniu do rozpoznawania tekstu w aplikacji działającej w czasie rzeczywistym, postępuj zgodnie z poniższymi wskazówkami, aby uzyskać najlepszą liczbę klatek na sekundę:

  • Ograniczaj wywołania aparatu rozpoznawania tekstu. Jeśli nowa ramka wideo stanie się dostępna, gdy aparat rozpoznawania tekstu jest uruchomiony, upuść ramkę.
  • Jeśli używasz danych wyjściowych aparatu rozpoznawania tekstu do nakładania grafiki na obraz wejściowy, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz i nakładkę w jednym kroku. W ten sposób renderujesz na powierzchnię wyświetlania tylko raz dla każdej klatki wejściowej.
  • W przypadku korzystania z interfejsu API Camera2 przechwytywanie obrazów w formacie ImageFormat.YUV_420_888 .

    Jeśli używasz starszego interfejsu Camera API, przechwytuj obrazy w formacie ImageFormat.NV21 .

  • Rozważ robienie zdjęć w niższej rozdzielczości. Należy jednak pamiętać o wymaganiach dotyczących wymiarów obrazu tego interfejsu API.

Następne kroki


Rozpoznawaj tekst na obrazach dokumentów

Aby rozpoznać tekst dokumentu, skonfiguruj i uruchom oparty na chmurze aparat rozpoznawania tekstu dokumentu zgodnie z poniższym opisem.

Opisany poniżej interfejs API rozpoznawania tekstu dokumentu zapewnia interfejs, który ma być wygodniejszy do pracy z obrazami dokumentów. Jeśli jednak wolisz interfejs udostępniany przez interfejs API FirebaseVisionTextRecognizer , możesz go użyć do skanowania dokumentów, konfigurując aparat rozpoznawania tekstu w chmurze tak, aby używał modelu gęstego tekstu .

Aby użyć interfejsu API rozpoznawania tekstu dokumentu:

1. Uruchom aparat rozpoznawania tekstu

Aby rozpoznać tekst w obrazie, utwórz obiekt FirebaseVisionImage z Bitmap , media.Image , ByteBuffer , tablicy bajtów lub pliku na urządzeniu. Następnie przekaż obiekt FirebaseVisionImage do metody FirebaseVisionDocumentTextRecognizer processImage .

  1. Utwórz obiekt FirebaseVisionImage z obrazu.

    • Aby utworzyć obiekt FirebaseVisionImage z obiektu media.Image , na przykład podczas przechwytywania obrazu z aparatu urządzenia, przekaż obiekt media.Image i obrót obrazu do funkcji FirebaseVisionImage.fromMediaImage() .

      Jeśli używasz biblioteki CameraX , klasy OnImageCapturedListener i ImageAnalysis.Analyzer obliczają wartość obrotu za Ciebie, więc wystarczy przekonwertować obrót na jedną ze stałych ROTATION_ ML Kit przed wywołaniem FirebaseVisionImage.fromMediaImage() :

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      Jeśli nie korzystasz z biblioteki aparatu, która podaje obrót obrazu, możesz to obliczyć na podstawie obrotu urządzenia i orientacji czujnika aparatu w urządzeniu:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Następnie przekaż obiekt media.Image i wartość obrotu do FirebaseVisionImage.fromMediaImage() :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Aby utworzyć obiekt FirebaseVisionImage z identyfikatora URI pliku, przekaż kontekst aplikacji i identyfikator URI pliku do FirebaseVisionImage.fromFilePath() . Jest to przydatne, gdy używasz intencji ACTION_GET_CONTENT , aby skłonić użytkownika do wybrania obrazu z jego aplikacji galerii.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Aby utworzyć obiekt FirebaseVisionImage z ByteBuffer lub tablicy bajtów, najpierw oblicz obrót obrazu zgodnie z powyższym opisem dla danych wejściowych media.Image .

      Następnie utwórz obiekt FirebaseVisionImageMetadata zawierający wysokość, szerokość, format kodowania kolorów i obrót obrazu:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Użyj buforu lub tablicy oraz obiektu metadanych, aby utworzyć obiekt FirebaseVisionImage :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Aby utworzyć obiekt FirebaseVisionImage z obiektu Bitmap :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Obraz reprezentowany przez obiekt Bitmap musi być ustawiony pionowo, bez konieczności dodatkowego obracania.

  2. Pobierz instancję FirebaseVisionDocumentTextRecognizer :

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    val detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options)

  3. Na koniec przekaż obraz do metody processImage :

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin+KTX

    detector.processImage(myImage)
            .addOnSuccessListener { firebaseVisionDocumentText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Wyodrębnij tekst z bloków rozpoznanego tekstu

Jeśli operacja rozpoznawania tekstu się powiedzie, zwróci obiekt FirebaseVisionDocumentText . Obiekt FirebaseVisionDocumentText zawiera pełny tekst rozpoznany na obrazie oraz hierarchię obiektów, która odzwierciedla strukturę rozpoznanego dokumentu:

Dla każdego obiektu Block , Paragraph , Word i Symbol można uzyskać tekst rozpoznawany w regionie oraz współrzędne ograniczające regionu.

Na przykład:

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

Następne kroki