您可以使用 Firebase ML 來標記影像中識別的物件。有關此 API 功能的信息,請參閱概述。
在你開始之前
- 如果您尚未將 Firebase 新增至您的 Android 專案中,請將其新增至您的 Android 專案中。
- 在模組(應用程式等級)Gradle 檔案(通常
<project>/<app-module>/build.gradle.kts
或<project>/<app-module>/build.gradle
)中,新增 Firebase ML 的依賴項Android視覺庫。我們建議使用Firebase Android BoM來控制函式庫版本控制。dependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:32.6.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
透過使用Firebase Android BoM ,您的應用程式將始終使用 Firebase Android 程式庫的相容版本。
正在尋找 Kotlin 特定的庫模組?從2023 年 10 月(Firebase BoM 32.5.0)開始,Kotlin 和 Java 開發人員都可以依賴主庫模組(有關詳細信息,請參閱有關此計劃的常見問題解答)。(替代方法)在不使用 BoM 的情況下新增 Firebase 庫依賴項
如果您選擇不使用 Firebase BoM,則必須在其依賴項行中指定每個 Firebase 庫版本。
請注意,如果您在應用程式中使用多個Firebase 程式庫,我們強烈建議使用 BoM 來管理程式庫版本,這可確保所有版本相容。
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
如果您尚未為您的專案啟用基於雲端的 API,請立即執行此操作:
- 開啟 Firebase 控制台的Firebase ML API 頁面。
如果您尚未將項目升級到 Blaze 定價計劃,請按一下升級來執行此操作。 (只有當您的專案不在 Blaze 計劃中時,系統才會提示您升級。)
只有 Blaze 等級的項目才能使用基於雲端的 API。
- 如果尚未啟用基於雲端的 API,請按一下啟用基於雲端的 API 。
現在您可以為圖像添加標籤了。
1. 準備輸入影像
從您的映像建立FirebaseVisionImage
物件。當您使用Bitmap
時,圖像標籤器運行速度最快,或者如果您使用camera2 API,則使用 JPEG 格式的media.Image
,如果可能的話,建議您使用這些方式。若要從
media.Image
物件建立FirebaseVisionImage
物件(例如從裝置的相機擷取影像時),請將media.Image
物件和影像的旋轉傳遞給FirebaseVisionImage.fromMediaImage()
。如果您使用CameraX函式庫,則
OnImageCapturedListener
和ImageAnalysis.Analyzer
類別會為您計算旋轉值,因此您只需在呼叫FirebaseVisionImage.fromMediaImage()
之前將旋轉轉換為 Firebase ML 的ROTATION_
常數之一:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
如果您不使用為您提供影像旋轉的相機庫,您可以根據裝置的旋轉和裝置中相機感測器的方向來計算它:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
然後,將
media.Image
物件和旋轉值傳遞給FirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- 若要從檔案 URI 建立
FirebaseVisionImage
對象,請將套用上下文和檔案 URI 傳遞給FirebaseVisionImage.fromFilePath()
。當您使用ACTION_GET_CONTENT
意圖提示使用者從其圖庫應用程式中選擇影像時,這非常有用。Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- 若要從
ByteBuffer
或位元組數組建立FirebaseVisionImage
對象,請先按照上面針對media.Image
輸入所述計算圖像旋轉。然後,建立一個
FirebaseVisionImageMetadata
對象,其中包含圖像的高度、寬度、顏色編碼格式和旋轉:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
使用緩衝區或陣列以及元資料物件來建立
FirebaseVisionImage
物件:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- 要從
Bitmap
物件建立FirebaseVisionImage
物件:Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
物件表示的影像必須是直立的,不需要額外旋轉。
2. 配置並運行影像標記器
若要標記映像中的對象,請將FirebaseVisionImage
物件傳遞給FirebaseVisionImageLabeler
的processImage
方法。首先,取得
FirebaseVisionImageLabeler
的實例。Kotlin+KTX
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
然後,將影像傳遞給
processImage()
方法:Kotlin+KTX
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
3. 取得標籤物件的信息
如果影像標記操作成功,FirebaseVisionImageLabel
物件的清單將傳遞給成功偵聽器。每個FirebaseVisionImageLabel
物件都代表影像中標記的內容。對於每個標籤,您可以獲得標籤的文字描述、其知識圖實體 ID (如果可用)以及匹配的置信度分數。例如: Kotlin+KTX
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
下一步
- 在將使用雲端 API 的應用程式部署到生產環境之前,您應該採取一些額外的步驟來防止和減輕未經授權的 API 存取的影響。