Nhận diện địa danh bằng công nghệ học máy của Firebase trên Android

Bạn có thể sử dụng Firebase ML để nhận ra các địa danh nổi tiếng trong một hình ảnh.

Trước khi bắt đầu

  1. Nếu bạn chưa làm như vậy, thêm Firebase vào dự án Android của bạn.
  2. Trong tệp Gradle mô-đun (cấp ứng dụng) (thường là <project>/<app-module>/build.gradle.kts hoặc <project>/<app-module>/build.gradle), thêm phần phụ thuộc cho thư viện Tầm nhìn Firebase ML dành cho Android. Bạn nên sử dụng Firebase Android BoM để kiểm soát việc tạo phiên bản thư viện.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:33.2.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    Khi sử dụng Firebase Android BoM, ứng dụng của bạn sẽ luôn sử dụng các phiên bản tương thích của thư viện Android trên Firebase.

    (Phương án thay thế) Thêm các phần phụ thuộc của thư viện Firebase mà không sử dụng BoM

    Nếu chọn không sử dụng Firebase BoM, bạn phải chỉ định từng phiên bản thư viện Firebase trong dòng phụ thuộc.

    Lưu ý rằng nếu bạn sử dụng nhiều thư viện Firebase trong ứng dụng của mình, bạn nên sử dụng BoM để quản lý các phiên bản thư viện. Việc này đảm bảo rằng tất cả các phiên bản đều tương thích.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    Bạn đang tìm một mô-đun thư viện dành riêng cho Kotlin? Bắt đầu sau Tháng 10 năm 2023 (Firebase BoM 32.5.0), cả nhà phát triển Kotlin và Java đều có thể phụ thuộc vào mô-đun thư viện chính (để biết thông tin chi tiết, hãy xem Câu hỏi thường gặp về sáng kiến này).
  3. Nếu bạn chưa bật API trên đám mây cho dự án của mình, hãy bật bây giờ:

    1. Mở Firebase ML trang API của bảng điều khiển Firebase.
    2. Nếu bạn chưa nâng cấp dự án của mình lên Gói giá linh hoạt, hãy nhấp vào Hãy nâng cấp để làm điều này. (Bạn sẽ chỉ được nhắc nâng cấp nếu không có trong Kế hoạch linh hoạt.)

      Chỉ các dự án cấp Blaze mới có thể sử dụng API trên đám mây.

    3. Nếu bạn chưa bật API trên đám mây, hãy nhấp vào Bật API dựa trên đám mây API.

Định cấu hình trình phát hiện điểm mốc

Theo mặc định, trình phát hiện đám mây sử dụng phiên bản STABLE của vào mô hình và trả về tối đa 10 kết quả. Nếu bạn muốn thay đổi một trong hai lựa chọn này hãy chỉ định chúng bằng FirebaseVisionCloudDetectorOptions .

Ví dụ: để thay đổi cả hai chế độ cài đặt mặc định, hãy tạo một FirebaseVisionCloudDetectorOptions đối tượng như trong ví dụ:

Kotlin+KTX

val options = FirebaseVisionCloudDetectorOptions.Builder()
    .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
    .setMaxResults(15)
    .build()

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Để sử dụng chế độ cài đặt mặc định, bạn có thể sử dụng FirebaseVisionCloudDetectorOptions.DEFAULT trong bước tiếp theo.

Chạy trình phát hiện mốc

Để nhận dạng địa danh trong một hình ảnh, hãy tạo một đối tượng FirebaseVisionImage từ một mảng Bitmap, media.Image, ByteBuffer, byte hoặc một tệp trên thiết bị. Sau đó, hãy truyền đối tượng FirebaseVisionImage vào phương thức Phương thức detectInImage của FirebaseVisionCloudLandmarkDetector.

  1. Tạo một đối tượng FirebaseVisionImage từ hình ảnh của bạn.

    • Cách tạo đối tượng FirebaseVisionImage qua Đối tượng media.Image, chẳng hạn như khi chụp ảnh từ camera của thiết bị, hãy truyền đối tượng media.Image và xoay thành FirebaseVisionImage.fromMediaImage().

      Nếu bạn sử dụng Thư viện CameraX, OnImageCapturedListener và Các lớp ImageAnalysis.Analyzer tính toán giá trị xoay cho bạn, nên bạn chỉ cần chuyển đổi chế độ xoay thành một trong Firebase ML Hằng số ROTATION_ trước khi gọi FirebaseVisionImage.fromMediaImage():

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }

      Nếu không sử dụng thư viện máy ảnh cho phép bạn xoay hình ảnh, có thể tính toán kích thước này dựa trên hướng xoay của thiết bị và hướng của máy ảnh cảm biến trong thiết bị:

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Sau đó, hãy truyền đối tượng media.Image và thành FirebaseVisionImage.fromMediaImage():

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • Để tạo đối tượng FirebaseVisionImage qua URI tệp, hãy truyền ngữ cảnh ứng dụng và URI tệp để FirebaseVisionImage.fromFilePath() Điều này rất hữu ích khi bạn sử dụng ý định ACTION_GET_CONTENT để nhắc người dùng chọn một bức ảnh trong ứng dụng thư viện của họ.

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • Cách tạo đối tượng FirebaseVisionImage qua ByteBuffer hoặc một mảng byte, trước tiên, hãy tính hình ảnh như mô tả ở trên cho đầu vào media.Image.

      Sau đó, hãy tạo một đối tượng FirebaseVisionImageMetadata có chứa chiều cao, chiều rộng, định dạng mã hoá màu của hình ảnh, và xoay:

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Sử dụng vùng đệm hoặc mảng và đối tượng siêu dữ liệu để tạo một Đối tượng FirebaseVisionImage:

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • Cách tạo đối tượng FirebaseVisionImage qua Đối tượng Bitmap:

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      Hình ảnh mà đối tượng Bitmap đại diện phải thẳng đứng mà không cần xoay thêm.

  2. Nhận một thực thể của FirebaseVisionCloudLandmarkDetector:

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
        .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);
  3. Cuối cùng, hãy truyền hình ảnh vào phương thức detectInImage:

    Kotlin+KTX

    val result = detector.detectInImage(image)
        .addOnSuccessListener { firebaseVisionCloudLandmarks ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

Xem thông tin về các địa danh được công nhận

Nếu thao tác nhận dạng mốc thành công, danh sách Các đối tượng FirebaseVisionCloudLandmark sẽ được chuyển đến trình nghe thành công. Một Đối tượng FirebaseVisionCloudLandmark đại diện cho một mốc được công nhận trong hình ảnh. Đối với mỗi mốc, bạn có thể lấy toạ độ giới hạn trong hình ảnh đầu vào. tên địa danh, vĩ độ và kinh độ, mã nhận dạng thực thể trên Sơ đồ tri thức (nếu có) và điểm số tin cậy của kết quả trùng khớp. Ví dụ:

Kotlin+KTX

for (landmark in firebaseVisionCloudLandmarks) {
    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Các bước tiếp theo