Bilder mit Cloud Vision und Firebase Auth und Firebase-Funktionen auf Apple-Plattformen sicher beschriften

Um eine Google Cloud API aus Ihrer Anwendung heraus aufzurufen, müssen Sie eine Zwischendatei REST API, die die Autorisierung verarbeitet und Secret-Werte wie API-Schlüssel schützt. Anschließend müssen Sie Schreiben Sie Code in Ihre mobile App, um sich bei diesem Zwischendienst zu authentifizieren und mit diesem zu kommunizieren.

Eine Möglichkeit, diese REST API zu erstellen, ist die Verwendung von Firebase Authentication und Firebase Functions. So erhalten Sie ein verwaltetes, serverloses Gateway zu Google Cloud APIs, das die Authentifizierung übernimmt und mit vorgefertigten SDKs von Ihrer mobilen App aufgerufen werden kann.

In diesem Leitfaden wird gezeigt, wie Sie mit dieser Technik die Cloud Vision API über Ihre Anwendung aufrufen. Mit dieser Methode können alle authentifizierten Nutzer über Ihr Cloud-Projekt auf in Cloud Vision abgerechnete Dienste zugreifen. Prüfen Sie, ob dieser Authentifizierungsmechanismus für Ihren Anwendungsfall ausreicht, bevor Sie fortfahren.

Hinweis

Projekt konfigurieren

Wenn Sie Ihrer App noch keine Firebase-Integration hinzugefügt haben, folgen Sie der Anleitung im Einstiegsleitfaden.

Verwenden Sie Swift Package Manager, um Firebase-Abhängigkeiten zu installieren und zu verwalten.

  1. Gehen Sie in Xcode bei geöffnetem App-Projekt zu File > Pakete hinzufügen.
  2. Fügen Sie bei entsprechender Aufforderung das Firebase Apple Platforms SDK-Repository hinzu:
  3.   https://github.com/firebase/firebase-ios-sdk.git
  4. Wählen Sie die Firebase ML-Bibliothek aus.
  5. Fügen Sie in den Build-Einstellungen des Ziels im Bereich Other Linker Flags das Flag -ObjC hinzu.
  6. Wenn Sie fertig, beginnt Xcode automatisch, Ihre Abhängigkeiten im Hintergrund aufzulösen und herunterzuladen.

Führen Sie als Nächstes eine In-App-Einrichtung durch:

  1. Importieren Sie Firebase in Ihre App:

    Swift

    import FirebaseMLModelDownloader

    Objective-C

    @import FirebaseMLModelDownloader;

Es sind nur noch ein paar Konfigurationsschritte erforderlich:

  1. Wenn Sie noch keine cloudbasierten APIs für Ihr Projekt aktiviert haben, tun Sie dies jetzt. jetzt:

    1. Öffnen Sie das Firebase ML APIs-Seite der Firebase-Konsole.
    2. Wenn Sie für Ihr Projekt noch kein Upgrade auf das Blaze-Preismodell durchgeführt haben, klicken Sie auf Führen Sie ein Upgrade durch. Sie werden nur dann zum Upgrade aufgefordert, Projekt nicht im Tarif "Blaze" ist.)

      Nur Projekte auf Blaze-Ebene können cloudbasierte APIs verwenden.

    3. Wenn cloudbasierte APIs noch nicht aktiviert sind, klicken Sie auf Cloudbasierte APIs aktivieren.
  2. Vorhandene Firebase API-Schlüssel konfigurieren, um den Zugriff auf die Cloud zu verhindern Vision API:
    1. Öffnen Sie in der Cloud Console die Seite Anmeldedaten.
    2. Öffnen Sie für jeden API-Schlüssel in der Liste die Bearbeitungsansicht und fügen Sie im Abschnitt „Einschränkungen für Schlüssel“ alle verfügbaren APIs außer der Cloud Vision API hinzu.

Callable-Funktion bereitstellen

Stellen Sie als Nächstes die Cloud Functions-Funktion bereit, mit der Sie die Anwendung und die Cloud verbinden möchten Vision API Das Repository functions-samples enthält ein Beispiel die Sie verwenden können.

Standardmäßig können nur authentifizierte Nutzer Ihrer App über diese Funktion auf die Cloud Vision API zugreifen. Sie können die Funktion an unterschiedliche Anforderungen anpassen können.

So stellen Sie die Funktion bereit:

  1. Klonen Sie das Repository „functions-samples“ oder laden Sie es herunter und wechseln Sie in das Verzeichnis Node-1st-gen/vision-annotate-image:
    git clone https://github.com/firebase/functions-samples
    cd Node-1st-gen/vision-annotate-image
    
  2. Installieren Sie die Abhängigkeiten:
    cd functions
    npm install
    cd ..
  3. Wenn Sie die Firebase CLI nicht haben, installieren Sie sie.
  4. Firebase-Projekt in vision-annotate-image initialisieren -Verzeichnis. Wählen Sie Ihr Projekt in der Liste aus, wenn Sie dazu aufgefordert werden.
    firebase init
  5. Die Funktion bereitstellen:
    firebase deploy --only functions:annotateImage

Firebase Auth zu Ihrer App hinzufügen

Die oben bereitgestellte aufrufbare Funktion lehnt alle Anfragen von nicht authentifizierten Anfragen ab die Nutzer Ihrer App. Wenn Sie dies noch nicht getan haben, müssen Sie Firebase hinzufügen Authentifizierung bei der App

Fügen Sie Ihrer App die erforderlichen Abhängigkeiten hinzu

Verwenden Sie Swift Package Manager, um die Cloud Functions for Firebase-Bibliothek zu installieren.

Jetzt können Sie den Bildern Labels hinzufügen.

1. Eingabebild vorbereiten

Zum Aufrufen von Cloud Vision muss das Bild als base64-codiert formatiert sein . So verarbeiten Sie ein UIImage:

Swift

guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
let base64encodedImage = imageData.base64EncodedString()

Objective-C

NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
NSString *base64encodedImage =
  [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];

2. Rufen Sie die aufrufbare Funktion auf, um das Bild mit einem Label zu versehen

Um Objekte in einem Bild mit einem Label zu versehen, rufen Sie die aufrufbare Funktion auf und übergeben einen JSON-Cloud Vision-Anfrage.

  1. Initialisieren Sie zuerst eine Instanz von Cloud Functions:

    Swift

    lazy var functions = Functions.functions()
    

    Objective-C

    @property(strong, nonatomic) FIRFunctions *functions;
    
  2. Erstellen Sie eine Anfrage, bei der für Type der Wert LABEL_DETECTION festgelegt ist:

    Swift

    let requestData = [
      "image": ["content": base64encodedImage],
      "features": ["maxResults": 5, "type": "LABEL_DETECTION"]
    ]
    

    Objective-C

    NSDictionary *requestData = @{
      @"image": @{@"content": base64encodedImage},
      @"features": @{@"maxResults": @5, @"type": @"LABEL_DETECTION"}
    };
    
  3. Rufen Sie abschließend die folgende Funktion auf:

    Swift

    do {
      let result = try await functions.httpsCallable("annotateImage").call(requestData)
      print(result)
    } catch {
      if let error = error as NSError? {
        if error.domain == FunctionsErrorDomain {
          let code = FunctionsErrorCode(rawValue: error.code)
          let message = error.localizedDescription
          let details = error.userInfo[FunctionsErrorDetailsKey]
        }
        // ...
      }
    }
    

    Objective-C

    [[_functions HTTPSCallableWithName:@"annotateImage"]
                              callWithObject:requestData
                                  completion:^(FIRHTTPSCallableResult * _Nullable result, NSError * _Nullable error) {
            if (error) {
              if ([error.domain isEqualToString:@"com.firebase.functions"]) {
                FIRFunctionsErrorCode code = error.code;
                NSString *message = error.localizedDescription;
                NSObject *details = error.userInfo[@"details"];
              }
              // ...
            }
            // Function completed succesfully
            // Get information about labeled objects
    
          }];
    

3. Informationen zu gekennzeichneten Objekten abrufen

Wenn der Vorgang zur Labelerstellung erfolgreich war, wird eine JSON-Antwort von BatchAnnotateImagesResponse wird im Ergebnis der Aufgabe zurückgegeben. Jedes Objekt im labelAnnotations -Array repräsentiert etwas, das im Bild mit einem Label versehen wurde. Für jedes Label können Sie die Textbeschreibung des Labels, die Knowledge Graph-Entitäts-ID (falls verfügbar) und den Konfidenzwert der Übereinstimmung abrufen. Beispiel:

Swift

if let labelArray = (result?.data as? [String: Any])?["labelAnnotations"] as? [[String:Any]] {
  for labelObj in labelArray {
    let text = labelObj["description"]
    let entityId = labelObj["mid"]
    let confidence = labelObj["score"]
  }
}

Objective-C

NSArray *labelArray = result.data[@"labelAnnotations"];
for (NSDictionary *labelObj in labelArray) {
  NSString *text = labelObj[@"description"];
  NSString *entityId = labelObj[@"mid"];
  NSNumber *confidence = labelObj[@"score"];
}