Bilder mit Firebase ML auf Android-Geräten mit Labels versehen

Mit Firebase ML können Sie Objekte in einem Bild labeln. Weitere Informationen finden Sie in der Übersicht für Informationen zu dieser API Funktionen.

Hinweis

  1. Falls noch nicht geschehen, Fügen Sie Ihrem Android-Projekt Firebase hinzu.
  2. Fügen Sie in der Gradle-Datei des Moduls (auf App-Ebene) (in der Regel <project>/<app-module>/build.gradle.kts oder <project>/<app-module>/build.gradle) die Abhängigkeit für die Firebase ML Vision-Bibliothek für Android hinzu. Wir empfehlen die Verwendung des Firebase Android BoM um die Versionsverwaltung der Bibliothek zu steuern.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:33.3.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    Mit der Firebase Android BoM haben Sie immer eine kompatible Version der Firebase Android-Bibliotheken in Ihrer App.

    Alternative: Firebase-Bibliotheksabhängigkeiten ohne BoM hinzufügen

    Wenn Sie Firebase BoM nicht verwenden, müssen Sie jede Firebase-Bibliotheksversion in der entsprechenden Abhängigkeitszeile angeben.

    Wenn Sie in Ihrer App mehrere Firebase-Bibliotheken verwenden, empfehlen, Bibliotheksversionen mit der BoM zu verwalten. Dadurch wird sichergestellt, dass alle Versionen kompatibel.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    Sie suchen nach einem Kotlin-spezifischen Bibliotheksmodul? Beginnt in Oktober 2023 (Firebase BoM 32.5.0) können sowohl Kotlin- als auch Java-Entwickler sind vom Modul der Hauptbibliothek abhängig (Details finden Sie in der FAQs zu dieser Initiative).
  3. Wenn Sie noch keine cloudbasierten APIs für Ihr Projekt aktiviert haben, tun Sie dies jetzt. jetzt:

    1. Öffnen Sie in der Firebase-Konsole die Seite Firebase MLAPIs.
    2. Wenn Sie für Ihr Projekt noch kein Upgrade auf das Blaze-Preismodell durchgeführt haben, klicken Sie auf Führen Sie ein Upgrade durch. Sie werden nur dann zum Upgrade aufgefordert, Projekt nicht im Tarif "Blaze" enthalten ist.)

      Cloud-basierte APIs können nur in Projekten auf Blaze-Ebene verwendet werden.

    3. Wenn cloudbasierte APIs noch nicht aktiviert sind, klicken Sie auf Cloudbasiertes Erstellen aktivieren APIs

Jetzt können Sie den Bildern Labels hinzufügen.

1. Eingabebild vorbereiten

Erstellen Sie ein FirebaseVisionImage-Objekt aus Ihrem Bild. Der Labelersteller wird am schnellsten ausgeführt, wenn Sie ein Bitmap oder das mit der Camera2 API, einer media.Image im JPEG-Format. Diese API wird empfohlen, möglich.

  • Um ein FirebaseVisionImage-Objekt aus einem media.Image-Objekt, z. B. beim Aufnehmen eines Bildes von einem des Geräts an und übergib das media.Image-Objekt und die Rotation auf FirebaseVisionImage.fromMediaImage().

    Wenn Sie die CameraX-Bibliothek verwenden, wird der Drehwert von den Klassen OnImageCapturedListener und ImageAnalysis.Analyzer für Sie berechnet. Sie müssen die Drehung also nur in eine der ROTATION_-Konstanten von Firebase ML umwandeln, bevor Sie FirebaseVisionImage.fromMediaImage() aufrufen:

    Kotlin+KTX

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Vision API
                // ...
            }
        }
    }

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Vision API
            // ...
        }
    }

    Wenn Sie keine Kamerabibliothek verwenden, die die Drehung des Bildes angibt, können Sie sie anhand der Drehung des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:

    Kotlin+KTX

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Übergeben Sie dann das media.Image-Objekt und den Drehwert an FirebaseVisionImage.fromMediaImage():

    Kotlin+KTX

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
  • Wenn Sie ein FirebaseVisionImage-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an FirebaseVisionImage.fromFilePath(). Das ist nützlich, wenn Sie mit einer ACTION_GET_CONTENT-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.

    Kotlin+KTX

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }
  • Um ein FirebaseVisionImage-Objekt aus einem ByteBuffer oder einem Byte-Array, berechnen Sie zuerst das Bild Rotation wie oben für die media.Image-Eingabe beschrieben.

    Erstellen Sie dann ein FirebaseVisionImageMetadata-Objekt. die die Höhe, Breite, Farbcodierung, und Rotation:

    Kotlin+KTX

    val metadata = FirebaseVisionImageMetadata.Builder()
        .setWidth(480) // 480x360 is typically sufficient for
        .setHeight(360) // image recognition
        .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
        .setRotation(rotation)
        .build()

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Verwenden Sie den Zwischenspeicher oder das Array und das Metadatenobjekt, um einen Objekt FirebaseVisionImage:

    Kotlin+KTX

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
  • So erstellen Sie ein FirebaseVisionImage-Objekt aus einem Bitmap-Objekt:

    Kotlin+KTX

    val image = FirebaseVisionImage.fromBitmap(bitmap)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
    Das durch das Objekt Bitmap dargestellte Bild muss aufrecht und ohne zusätzliche Drehung aufrecht.

2. Labelersteller für Images konfigurieren und ausführen

Wenn Sie Objekte in einem Bild mit Labels versehen möchten, übergeben Sie das FirebaseVisionImage-Objekt an die processImage-Methode des FirebaseVisionImageLabeler-Objekts.

  1. Rufen Sie zuerst eine Instanz von FirebaseVisionImageLabeler ab.

    Kotlin+KTX

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

  2. Übergeben Sie dann das Bild an die processImage()-Methode:

    Kotlin+KTX

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

3. Informationen zu Objekten mit Label abrufen

Wenn der Vorgang zum Beschriften von Bildern erfolgreich war, wird dem Erfolgs-Listener eine Liste von FirebaseVisionImageLabel-Objekten übergeben. Jedes FirebaseVisionImageLabel-Objekt stellt etwas dar, das im Bild beschriftet war. Für jedes Label können Sie die Textbeschreibung des Labels, die Knowledge Graph-Entitäts-ID (falls verfügbar) und den Konfidenzwert der Übereinstimmung abrufen. Beispiel:

Kotlin+KTX

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

Nächste Schritte