Firebase is back at Google I/O on May 10! Register now

จดจำข้อความในรูปภาพด้วย ML Kit บน Android

จัดทุกอย่างให้เป็นระเบียบอยู่เสมอด้วยคอลเล็กชัน บันทึกและจัดหมวดหมู่เนื้อหาตามค่ากำหนดของคุณ

คุณสามารถใช้ ML Kit เพื่อจดจำข้อความในรูปภาพได้ ML Kit มีทั้ง API สำหรับใช้งานทั่วไปที่เหมาะสำหรับการจดจำข้อความในรูปภาพ เช่น ข้อความของป้ายถนน และ API ที่ปรับให้เหมาะสมสำหรับการจดจำข้อความของเอกสาร API วัตถุประสงค์ทั่วไปมีทั้งแบบในอุปกรณ์และแบบคลาวด์ การรู้จำข้อความในเอกสารมีให้ใช้งานในรูปแบบคลาวด์เท่านั้น ดู ภาพรวม สำหรับการเปรียบเทียบรุ่นคลาวด์และอุปกรณ์

ก่อนจะเริ่ม

  1. หากคุณยังไม่ได้ เพิ่ม Firebase ในโครงการ Android ของคุณ
  2. เพิ่มการพึ่งพาสำหรับไลบรารี ML Kit Android ไปยังโมดูลของคุณ (ระดับแอป) ไฟล์ Gradle (โดยปกติคือ app/build.gradle ):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
    
  3. ไม่บังคับ แต่แนะนำ : หากคุณใช้ API บนอุปกรณ์ ให้กำหนดค่าแอปให้ดาวน์โหลดรุ่น ML ไปยังอุปกรณ์โดยอัตโนมัติหลังจากติดตั้งแอปจาก Play Store

    โดยเพิ่มการประกาศต่อไปนี้ในไฟล์ AndroidManifest.xml ของแอป:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    
    หากคุณไม่เปิดใช้งานการดาวน์โหลดโมเดลเวลาติดตั้ง โมเดลจะถูกดาวน์โหลดในครั้งแรกที่คุณเรียกใช้ตัวตรวจจับในอุปกรณ์ คำขอที่คุณทำก่อนที่การดาวน์โหลดจะเสร็จสิ้นจะไม่เกิดผลลัพธ์ใดๆ
  4. หากคุณต้องการใช้โมเดลบนคลาวด์ และคุณยังไม่ได้เปิดใช้งาน API แบบคลาวด์สำหรับโปรเจ็กต์ของคุณ ให้ทำตอนนี้:

    1. เปิดหน้า ML Kit APIs ของคอนโซล Firebase
    2. หากคุณยังไม่ได้อัปเกรดโปรเจ็กต์ของคุณเป็นแผนราคา Blaze ให้คลิก อัปเกรด เพื่อดำเนินการดังกล่าว (คุณจะได้รับแจ้งให้อัปเกรดเฉพาะเมื่อโปรเจ็กต์ของคุณไม่อยู่ในแผน Blaze)

      เฉพาะโปรเจ็กต์ระดับ Blaze เท่านั้นที่สามารถใช้ API แบบคลาวด์ได้

    3. หากยังไม่ได้เปิดใช้งาน API แบบคลาวด์ ให้คลิก เปิดใช้งาน API แบบคลาวด์

    หากคุณต้องการใช้เฉพาะรุ่นในอุปกรณ์ ให้ข้ามขั้นตอนนี้

ตอนนี้คุณพร้อมที่จะเริ่มจดจำข้อความในภาพแล้ว

ป้อนหลักเกณฑ์เกี่ยวกับรูปภาพ

  • เพื่อให้ ML Kit จดจำข้อความได้อย่างแม่นยำ รูปภาพที่ป้อนต้องมีข้อความที่แสดงด้วยข้อมูลพิกเซลที่เพียงพอ ตามหลักการแล้วสำหรับข้อความภาษาละติน อักขระแต่ละตัวควรมีขนาดอย่างน้อย 16x16 พิกเซล สำหรับข้อความภาษาจีน ญี่ปุ่น และเกาหลี (รองรับโดย API ที่ใช้ระบบคลาวด์เท่านั้น) อักขระแต่ละตัวควรมีขนาด 24x24 พิกเซล สำหรับทุกภาษา โดยทั่วไปจะไม่มีประโยชน์ด้านความแม่นยำสำหรับอักขระที่มีขนาดใหญ่กว่า 24x24 พิกเซล

    ตัวอย่างเช่น รูปภาพขนาด 640x480 อาจทำงานได้ดีในการสแกนนามบัตรที่ใช้ความกว้างเต็มของรูปภาพ ในการสแกนเอกสารที่พิมพ์บนกระดาษขนาด Letter อาจต้องใช้ภาพขนาด 720x1280 พิกเซล

  • การโฟกัสภาพที่ไม่ดีอาจส่งผลเสียต่อความแม่นยำในการจดจำข้อความ หากคุณไม่ได้ผลลัพธ์ที่ยอมรับได้ ให้ลองขอให้ผู้ใช้จับภาพอีกครั้ง

  • หากคุณกำลังจดจำข้อความในแอปพลิเคชันแบบเรียลไทม์ คุณอาจต้องการพิจารณาขนาดโดยรวมของภาพที่ป้อนเข้า ภาพที่เล็กกว่าสามารถประมวลผลได้เร็วกว่า ดังนั้นเพื่อลดเวลาในการตอบสนอง จับภาพที่ความละเอียดต่ำ (โดยคำนึงถึงข้อกำหนดด้านความแม่นยำด้านบน) และตรวจสอบให้แน่ใจว่าข้อความใช้พื้นที่ภาพมากที่สุด โปรดดู เคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์ ด้วย


จดจำข้อความในภาพ

หากต้องการจดจำข้อความในรูปภาพโดยใช้รูปแบบบนอุปกรณ์หรือบนคลาวด์ ให้เรียกใช้ตัวจำแนกข้อความตามที่อธิบายไว้ด้านล่าง

1. เรียกใช้ตัวจำแนกข้อความ

หากต้องการจดจำข้อความในรูปภาพ ให้สร้างวัตถุ FirebaseVisionImage จาก Bitmap , media.Image , ByteBuffer , อาร์เรย์ไบต์หรือไฟล์บนอุปกรณ์ จากนั้น ส่งผ่านวัตถุ FirebaseVisionImage ไปยังเมธอด processImage ของ FirebaseVisionTextRecognizer

  1. สร้างวัตถุ FirebaseVisionImage จากรูปภาพของคุณ

    • ในการสร้างวัตถุ FirebaseVisionImage จากวัตถุ media.Image เช่น เมื่อถ่ายภาพจากกล้องของอุปกรณ์ ให้ส่งวัตถุ media.Image และการหมุนภาพไปที่ FirebaseVisionImage.fromMediaImage()

      หากคุณใช้ไลบรารี CameraX คลาส OnImageCapturedListener และ ImageAnalysis.Analyzer คำนวณค่าการหมุนให้กับคุณ ดังนั้นคุณเพียงแค่ต้องแปลงการหมุนเป็นค่าคงที่ ROTATION_ ของ ML Kit ก่อนเรียกใช้ FirebaseVisionImage.fromMediaImage() :

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      หากคุณไม่ได้ใช้ไลบรารีกล้องที่ให้การหมุนของรูปภาพ คุณสามารถคำนวณได้จากการหมุนของอุปกรณ์และการวางแนวของเซ็นเซอร์กล้องในอุปกรณ์:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      จากนั้นส่งวัตถุ media.Image และค่าการหมุนไปที่ FirebaseVisionImage.fromMediaImage() :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • หากต้องการสร้างวัตถุ FirebaseVisionImage จากไฟล์ URI ให้ส่งบริบทของแอปและไฟล์ URI ไปยัง FirebaseVisionImage.fromFilePath() สิ่งนี้มีประโยชน์เมื่อคุณใช้เจตนา ACTION_GET_CONTENT เพื่อแจ้งให้ผู้ใช้เลือกรูปภาพจากแอปแกลเลอรีของตน

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • หากต้องการสร้างวัตถุ FirebaseVisionImage จาก ByteBuffer หรืออาร์เรย์ไบต์ ขั้นแรกให้คำนวณการหมุนภาพตามที่อธิบายไว้ข้างต้นสำหรับอินพุต media.Image

      จากนั้น สร้างวัตถุ FirebaseVisionImageMetadata ที่มีความสูง ความกว้าง รูปแบบการเข้ารหัสสี และการหมุนของรูปภาพ:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      ใช้บัฟเฟอร์หรืออาร์เรย์ และวัตถุข้อมูลเมตาเพื่อสร้างวัตถุ FirebaseVisionImage :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • ในการสร้างวัตถุ FirebaseVisionImage จากวัตถุ Bitmap :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      รูปภาพที่แสดงโดยวัตถุ Bitmap จะต้องตั้งตรง โดยไม่ต้องหมุนเพิ่มเติม

  2. รับอินสแตนซ์ของ FirebaseVisionTextRecognizer

    ในการใช้รุ่นบนอุปกรณ์:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getOnDeviceTextRecognizer();

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .onDeviceTextRecognizer

    ในการใช้โมเดลบนคลาวด์:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();
    

    Kotlin+KTX

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    
    ตัวยึดตำแหน่ง22
  3. สุดท้าย ส่งภาพไปที่วิธี processImage :

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin+KTX

    val result = detector.processImage(image)
            .addOnSuccessListener { firebaseVisionText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. แยกข้อความจากบล็อกของข้อความที่รู้จัก

หากการดำเนินการรู้จำข้อความสำเร็จ ออบเจ็กต์ FirebaseVisionText จะถูกส่งต่อไปยังผู้ฟังที่ประสบความสำเร็จ ออบเจ็กต์ FirebaseVisionText มีข้อความแบบเต็มที่รู้จักในรูปภาพและออบเจ็กต์ TextBlock ที่เป็นศูนย์หรือมากกว่า

TextBlock แต่ละอันแสดงถึงบล็อกข้อความสี่เหลี่ยม ซึ่งประกอบด้วยวัตถุ Line ศูนย์หรือมากกว่า แต่ละออบเจ็กต์ Line มีออบเจ็กต์ Element ตั้งแต่ศูนย์ขึ้นไป ซึ่งแสดงถึงคำและเอนทิตีที่เหมือนคำ (วันที่ ตัวเลข และอื่นๆ)

สำหรับแต่ละวัตถุ TextBlock Line และ Element คุณสามารถรับข้อความที่รู้จักในพื้นที่และพิกัดขอบเขตของพื้นที่

ตัวอย่างเช่น:

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

เคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์

หากคุณต้องการใช้โมเดลในอุปกรณ์เพื่อจดจำข้อความในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามคำแนะนำเหล่านี้เพื่อให้ได้อัตราเฟรมที่ดีที่สุด:

  • เค้นโทรไปยังตัวจำแนกข้อความ หากเฟรมวิดีโอใหม่พร้อมใช้งานในขณะที่ตัวจำแนกข้อความกำลังทำงาน ให้วางเฟรม
  • หากคุณกำลังใช้เอาต์พุตของตัวจำแนกข้อความเพื่อซ้อนทับกราฟิกบนรูปภาพอินพุต ก่อนอื่นให้รับผลลัพธ์จาก ML Kit จากนั้นแสดงรูปภาพและโอเวอร์เลย์ในขั้นตอนเดียว เมื่อทำเช่นนั้น คุณจะแสดงผลไปยังพื้นผิวการแสดงผลเพียงครั้งเดียวสำหรับแต่ละเฟรมอินพุต
  • หากคุณใช้ Camera2 API ให้จับภาพในรูปแบบ ImageFormat.YUV_420_888

    หากคุณใช้ Camera API รุ่นเก่า ให้จับภาพในรูปแบบ ImageFormat.NV21

  • พิจารณาถ่ายภาพด้วยความละเอียดที่ต่ำกว่า อย่างไรก็ตาม พึงระลึกไว้เสมอว่าข้อกำหนดด้านมิติภาพของ API นี้

ขั้นตอนถัดไป


จดจำข้อความในรูปของเอกสาร

หากต้องการจดจำข้อความของเอกสาร ให้กำหนดค่าและเรียกใช้ตัวจำแนกข้อความในเอกสารบนระบบคลาวด์ตามที่อธิบายไว้ด้านล่าง

API การรู้จำข้อความของเอกสาร อธิบายไว้ด้านล่าง มีอินเทอร์เฟซที่ตั้งใจให้สะดวกยิ่งขึ้นสำหรับการทำงานกับรูปภาพของเอกสาร อย่างไรก็ตาม หากคุณต้องการอินเทอร์เฟซที่ FirebaseVisionTextRecognizer API ให้มา คุณสามารถใช้อินเทอร์เฟซดังกล่าวแทนการสแกนเอกสารโดยกำหนดค่าตัวจำแนกข้อความบนคลาวด์เพื่อ ใช้โมเดลข้อความหนาแน่น

ในการใช้ API การรู้จำข้อความของเอกสาร:

1. เรียกใช้ตัวจำแนกข้อความ

หากต้องการจดจำข้อความในรูปภาพ ให้สร้างวัตถุ FirebaseVisionImage จาก Bitmap , media.Image , ByteBuffer , อาร์เรย์ไบต์หรือไฟล์บนอุปกรณ์ จากนั้น ส่งผ่านวัตถุ FirebaseVisionImage ไปยังเมธอด processImage ของ FirebaseVisionDocumentTextRecognizer

  1. สร้างวัตถุ FirebaseVisionImage จากรูปภาพของคุณ

    • ในการสร้างวัตถุ FirebaseVisionImage จากวัตถุ media.Image เช่น เมื่อถ่ายภาพจากกล้องของอุปกรณ์ ให้ส่งวัตถุ media.Image และการหมุนภาพไปที่ FirebaseVisionImage.fromMediaImage()

      หากคุณใช้ไลบรารี CameraX คลาส OnImageCapturedListener และ ImageAnalysis.Analyzer คำนวณค่าการหมุนให้กับคุณ ดังนั้นคุณเพียงแค่ต้องแปลงการหมุนเป็นค่าคงที่ ROTATION_ ของ ML Kit ก่อนที่จะเรียกใช้ FirebaseVisionImage.fromMediaImage() :

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      หากคุณไม่ได้ใช้ไลบรารีกล้องที่ให้การหมุนของรูปภาพ คุณสามารถคำนวณได้จากการหมุนของอุปกรณ์และการวางแนวของเซ็นเซอร์กล้องในอุปกรณ์:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      จากนั้นส่งวัตถุ media.Image และค่าการหมุนไปที่ FirebaseVisionImage.fromMediaImage() :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • หากต้องการสร้างวัตถุ FirebaseVisionImage จากไฟล์ URI ให้ส่งบริบทของแอปและไฟล์ URI ไปยัง FirebaseVisionImage.fromFilePath() สิ่งนี้มีประโยชน์เมื่อคุณใช้เจตนา ACTION_GET_CONTENT เพื่อแจ้งให้ผู้ใช้เลือกรูปภาพจากแอปแกลเลอรีของตน

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • หากต้องการสร้างวัตถุ FirebaseVisionImage จาก ByteBuffer หรืออาร์เรย์ไบต์ ขั้นแรกให้คำนวณการหมุนภาพตามที่อธิบายไว้ข้างต้นสำหรับอินพุต media.Image

      จากนั้น สร้างวัตถุ FirebaseVisionImageMetadata ที่มีความสูง ความกว้าง รูปแบบการเข้ารหัสสี และการหมุนของรูปภาพ:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      ใช้บัฟเฟอร์หรืออาร์เรย์ และวัตถุข้อมูลเมตาเพื่อสร้างวัตถุ FirebaseVisionImage :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • ในการสร้างวัตถุ FirebaseVisionImage จากวัตถุ Bitmap :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      รูปภาพที่แสดงโดยวัตถุ Bitmap จะต้องตั้งตรง โดยไม่ต้องหมุนเพิ่มเติม

  2. รับอินสแตนซ์ของ FirebaseVisionDocumentTextRecognizer :

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);
    ตัวยึดตำแหน่ง42

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    val detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options)

  3. สุดท้าย ส่งภาพไปที่วิธี processImage :

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin+KTX

    detector.processImage(myImage)
            .addOnSuccessListener { firebaseVisionDocumentText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. แยกข้อความจากบล็อกของข้อความที่รู้จัก

หากการดำเนินการรู้จำข้อความสำเร็จ จะส่งคืนอ็อบเจ็กต์ FirebaseVisionDocumentText ออบเจ็กต์ FirebaseVisionDocumentText มีข้อความแบบเต็มที่รู้จักในรูปภาพและลำดับชั้นของออบเจ็กต์ที่สะท้อนโครงสร้างของเอกสารที่รู้จัก:

สำหรับออบเจ็กต์ Block , Paragraph , Word และ Symbol แต่ละรายการ คุณสามารถรับข้อความที่รู้จักในพื้นที่และพิกัดขอบเขตของภูมิภาค

ตัวอย่างเช่น:

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

ขั้นตอนถัดไป