คุณใช้ Firebase ML เพื่อจดจำข้อความในรูปภาพได้ Firebase ML มี เป็นทั้ง API อเนกประสงค์ซึ่งเหมาะสำหรับการจดจำข้อความในรูปภาพ เช่น ข้อความป้ายชื่อถนน และ API ที่เพิ่มประสิทธิภาพ สำหรับการจดจำข้อความของ เอกสาร
ก่อนเริ่มต้น
- หากคุณยังไม่ได้ดำเนินการ เพิ่ม Firebase ลงในโปรเจ็กต์ Android
-
ในไฟล์ Gradle ของโมดูล (ระดับแอป)
(ปกติ
<project>/<app-module>/build.gradle.kts
หรือ<project>/<app-module>/build.gradle
) เพิ่มทรัพยากร Dependency สำหรับไลบรารี Firebase ML Vision สำหรับ Android เราขอแนะนำให้ใช้ Firebase Android BoM เพื่อควบคุมการกำหนดเวอร์ชันไลบรารีdependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:33.2.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
เมื่อใช้Firebase Android BoM แอปจะใช้ไลบรารี Firebase Android เวอร์ชันที่เข้ากันได้เสมอ
(ทางเลือก) เพิ่มทรัพยากร Dependency ของไลบรารี Firebase โดยไม่ใช้ BoM
หากเลือกไม่ใช้ Firebase BoM คุณต้องระบุเวอร์ชันไลบรารี Firebase แต่ละเวอร์ชัน ในบรรทัดทรัพยากร Dependency
โปรดทราบว่าหากคุณใช้ไลบรารี Firebase หลายรายการในแอป เราขอแนะนำอย่างยิ่ง แนะนำให้ใช้ BoM ในการจัดการเวอร์ชันไลบรารี เพื่อให้มั่นใจว่าทุกเวอร์ชัน ที่เข้ากันได้
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
-
หากยังไม่ได้เปิดใช้ API ในระบบคลาวด์สำหรับโปรเจ็กต์ของคุณ ให้เปิดใช้ ในขณะนี้:
- เปิดFirebase ML หน้า API ของคอนโซล Firebase
-
หากคุณยังไม่ได้อัปเกรดโปรเจ็กต์เป็นแพ็กเกจราคา Blaze ให้คลิก โปรดอัปเกรดเพื่อดำเนินการ (คุณจะได้รับแจ้งให้อัปเกรดเฉพาะในกรณีต่อไปนี้ ไม่ได้อยู่ในแพ็กเกจ Blaze)
เฉพาะโปรเจ็กต์ระดับ Blaze เท่านั้นที่ใช้ API ในระบบคลาวด์ได้
- หากยังไม่ได้เปิดใช้ API ในระบบคลาวด์ ให้คลิกเปิดใช้ในระบบคลาวด์ API
ตอนนี้คุณพร้อมที่จะเริ่มจดจำข้อความในรูปภาพแล้ว
หลักเกณฑ์เกี่ยวกับรูปภาพที่ป้อน
-
เพื่อให้ Firebase ML จดจำข้อความได้อย่างถูกต้อง รูปภาพที่ป้อนต้องมี ข้อความที่แสดงด้วยข้อมูลพิกเซลที่เพียงพอ สำหรับภาษาละติน แต่ละอักขระควรมีขนาดอย่างน้อย 16x16 พิกเซล สำหรับภาษาจีน ข้อความภาษาญี่ปุ่นและเกาหลี ควรมีขนาด 24x24 พิกเซล ในทุกภาษา โดยทั่วไปจะไม่มี ประโยชน์ด้านความถูกต้องสำหรับอักขระที่มีขนาดใหญ่กว่า 24x24 พิกเซล
ตัวอย่างเช่น รูปภาพขนาด 640x480 อาจเหมาะสำหรับการสแกนนามบัตร ที่ใช้พื้นที่เต็มความกว้างของรูปภาพ หากต้องการสแกนเอกสารที่พิมพ์ กระดาษขนาดตัวอักษรอาจต้องใช้รูปภาพขนาด 720x1280 พิกเซล
-
การโฟกัสของรูปภาพไม่ดีอาจส่งผลเสียต่อความแม่นยำในการจดจำข้อความ หากไม่เป็นเช่นนั้น ได้ผลลัพธ์ที่ยอมรับได้ ลองขอให้ผู้ใช้จับภาพอีกครั้ง
การรู้จำข้อความในรูปภาพ
หากต้องการจดจำข้อความในรูปภาพ ให้เรียกใช้โปรแกรมจดจำข้อความตามที่อธิบายไว้ ที่ด้านล่าง
1. เรียกใช้โปรแกรมจดจำข้อความ
หากต้องการจดจำข้อความในรูปภาพ ให้สร้างออบเจ็กต์FirebaseVisionImage
จากอาร์เรย์ Bitmap
, media.Image
, ByteBuffer
, ไบต์ หรือไฟล์ใน
อุปกรณ์ จากนั้นส่งออบเจ็กต์ FirebaseVisionImage
ไปยัง
เมธอด processImage
ของ FirebaseVisionTextRecognizer
สร้างออบเจ็กต์
FirebaseVisionImage
จากรูปภาพ-
วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จากmedia.Image
เช่น เมื่อจับภาพจาก กล้องของอุปกรณ์ ส่งวัตถุmedia.Image
และ การหมุนเวียนเป็นFirebaseVisionImage.fromMediaImage()
หากคุณใช้แท็ก ไลบรารี CameraX,
OnImageCapturedListener
และImageAnalysis.Analyzer
คลาสจะคำนวณค่าการหมุนเวียน คุณต้องแปลงการหมุนเป็น Firebase ML ค่าคงที่ROTATION_
ก่อนโทรFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
หากคุณไม่ได้ใช้ไลบรารีกล้องถ่ายรูปที่ให้การหมุนของภาพ คุณ สามารถคำนวณได้จากการหมุนของอุปกรณ์และการวางแนวของกล้อง เซ็นเซอร์ในอุปกรณ์:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
จากนั้นส่งออบเจ็กต์
media.Image
และ ค่าการหมุนเวียนเป็นFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- หากต้องการสร้างออบเจ็กต์
FirebaseVisionImage
จาก URI ของไฟล์ ให้ส่ง บริบทของแอปและ URI ของไฟล์เพื่อFirebaseVisionImage.fromFilePath()
วิธีนี้มีประโยชน์เมื่อคุณ ใช้ IntentACTION_GET_CONTENT
เพื่อแจ้งให้ผู้ใช้เลือก รูปภาพจากแอปแกลเลอรีKotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จากByteBuffer
หรืออาร์เรย์ไบต์ ให้คำนวณรูปภาพก่อน การหมุนตามที่อธิบายไว้ข้างต้นสำหรับอินพุตmedia.Image
จากนั้นสร้างออบเจ็กต์
FirebaseVisionImageMetadata
ที่มีความสูง ความกว้าง รูปแบบการเข้ารหัสสีของรูปภาพ และการหมุน:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
ใช้บัฟเฟอร์หรืออาร์เรย์ และออบเจ็กต์ข้อมูลเมตาเพื่อสร้าง ออบเจ็กต์
FirebaseVisionImage
รายการ:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จาก ออบเจ็กต์Bitmap
รายการ:Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
ต้อง ให้ตั้งตรงโดยไม่ต้องมีการหมุนเพิ่มเติม
-
รับอินสแตนซ์ของ
FirebaseVisionTextRecognizer
Kotlin+KTX
val detector = FirebaseVision.getInstance().cloudTextRecognizer // Or, to change the default settings: // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build()
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getCloudTextRecognizer(); // Or, to change the default settings: // FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() // .getCloudTextRecognizer(options);
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build();
สุดท้าย ส่งรูปภาพไปยังเมธอด
processImage
ดังนี้Kotlin+KTX
val result = detector.processImage(image) .addOnSuccessListener { firebaseVisionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<FirebaseVisionText> result = detector.processImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText firebaseVisionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
2. ดึงข้อความจากบล็อกข้อความที่รู้จัก
ถ้าการดำเนินการจดจำข้อความสำเร็จ ระบบจะส่งต่อออบเจ็กต์FirebaseVisionText
ไปยังออบเจ็กต์สำเร็จ
Listener ออบเจ็กต์ FirebaseVisionText
มีข้อความแบบเต็มที่รู้จักใน
รูปภาพและออบเจ็กต์ TextBlock
จำนวนศูนย์รายการขึ้นไป
TextBlock
แต่ละรายการแสดงบล็อกข้อความสี่เหลี่ยมผืนผ้า ซึ่งมี 0 หรือ
ออบเจ็กต์ Line
เพิ่มเติม ออบเจ็กต์ Line
แต่ละรายการมี 0 หรือมากกว่า
วัตถุ Element
ซึ่งแสดงเป็นคำหรือคล้ายคำ
เอนทิตี (วันที่ ตัวเลข และอื่นๆ)
คุณจะได้รับข้อความสำหรับออบเจ็กต์ TextBlock
, Line
และ Element
แต่ละรายการ
ซึ่งรู้จักในภูมิภาคดังกล่าวและพิกัดชายแดนของภูมิภาค
เช่น
Kotlin+KTX
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockConfidence = block.confidence val blockLanguages = block.recognizedLanguages val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineConfidence = line.confidence val lineLanguages = line.recognizedLanguages val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementConfidence = element.confidence val elementLanguages = element.recognizedLanguages val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionText.Line line: block.getLines()) { String lineText = line.getText(); Float lineConfidence = line.getConfidence(); List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (FirebaseVisionText.Element element: line.getElements()) { String elementText = element.getText(); Float elementConfidence = element.getConfidence(); List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); } } }
ขั้นตอนถัดไป
- ก่อนที่จะทำให้แอปที่ใช้ Cloud API ใช้งานได้จริง คุณควรดำเนินการต่อไปนี้ ขั้นตอนเพิ่มเติมบางส่วนเพื่อป้องกันและบรรเทา ผลกระทบจากการเข้าถึง API ที่ไม่ได้รับอนุญาต
จดจำข้อความในรูปภาพเอกสาร
หากต้องการจดจำข้อความของเอกสาร ให้กำหนดค่าและเรียกใช้ เครื่องมือจดจำข้อความเอกสาร ตามที่อธิบายไว้ด้านล่าง
API การจดจำข้อความเอกสาร ซึ่งอธิบายไว้ด้านล่าง ให้อินเทอร์เฟซที่
มีจุดประสงค์เพื่อให้ทำงานกับรูปภาพเอกสารได้สะดวกยิ่งขึ้น อย่างไรก็ตาม
หากคุณต้องการใช้อินเทอร์เฟซจาก FirebaseVisionTextRecognizer
API
คุณสามารถใช้เพื่อสแกนเอกสารแทนได้ด้วยการกำหนดค่าข้อความในระบบคลาวด์
เพื่อใช้โมเดลข้อความความหนาแน่น
วิธีใช้ API การจดจำข้อความในเอกสาร
1. เรียกใช้โปรแกรมจดจำข้อความ
หากต้องการจดจำข้อความในรูปภาพ ให้สร้างออบเจ็กต์FirebaseVisionImage
จาก
Bitmap
, media.Image
, ByteBuffer
, ไบต์อาร์เรย์ หรือไฟล์ในอุปกรณ์
จากนั้นส่งออบเจ็กต์ FirebaseVisionImage
ไปยัง
เมธอด processImage
ของ FirebaseVisionDocumentTextRecognizer
สร้างออบเจ็กต์
FirebaseVisionImage
จากรูปภาพ-
วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จากmedia.Image
เช่น เมื่อจับภาพจาก กล้องของอุปกรณ์ ส่งวัตถุmedia.Image
และ การหมุนเวียนเป็นFirebaseVisionImage.fromMediaImage()
หากคุณใช้แท็ก ไลบรารี CameraX,
OnImageCapturedListener
และImageAnalysis.Analyzer
คลาสจะคำนวณค่าการหมุนเวียน คุณต้องแปลงการหมุนเป็น Firebase ML ค่าคงที่ROTATION_
ก่อนโทรFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
หากคุณไม่ได้ใช้ไลบรารีกล้องถ่ายรูปที่ให้การหมุนของภาพ คุณ สามารถคำนวณได้จากการหมุนของอุปกรณ์และการวางแนวของกล้อง เซ็นเซอร์ในอุปกรณ์:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
จากนั้นส่งออบเจ็กต์
media.Image
และ ค่าการหมุนเวียนเป็นFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- หากต้องการสร้างออบเจ็กต์
FirebaseVisionImage
จาก URI ของไฟล์ ให้ส่ง บริบทของแอปและ URI ของไฟล์เพื่อFirebaseVisionImage.fromFilePath()
วิธีนี้มีประโยชน์เมื่อคุณ ใช้ IntentACTION_GET_CONTENT
เพื่อแจ้งให้ผู้ใช้เลือก รูปภาพจากแอปแกลเลอรีKotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จากByteBuffer
หรืออาร์เรย์ไบต์ ให้คำนวณรูปภาพก่อน การหมุนตามที่อธิบายไว้ข้างต้นสำหรับอินพุตmedia.Image
จากนั้นสร้างออบเจ็กต์
FirebaseVisionImageMetadata
ที่มีความสูง ความกว้าง รูปแบบการเข้ารหัสสีของรูปภาพ และการหมุน:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
ใช้บัฟเฟอร์หรืออาร์เรย์ และออบเจ็กต์ข้อมูลเมตาเพื่อสร้าง ออบเจ็กต์
FirebaseVisionImage
รายการ:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- วิธีสร้างออบเจ็กต์
FirebaseVisionImage
จาก ออบเจ็กต์Bitmap
รายการ:Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
ต้อง ให้ตั้งตรงโดยไม่ต้องมีการหมุนเพิ่มเติม
-
รับอินสแตนซ์ของ
FirebaseVisionDocumentTextRecognizer
:Kotlin+KTX
val detector = FirebaseVision.getInstance() .cloudDocumentTextRecognizer
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build() val detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options)
Java
FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer();
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudDocumentRecognizerOptions options = new FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build(); FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options);
สุดท้าย ส่งรูปภาพไปยังเมธอด
processImage
ดังนี้Kotlin+KTX
detector.processImage(myImage) .addOnSuccessListener { firebaseVisionDocumentText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
detector.processImage(myImage) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() { @Override public void onSuccess(FirebaseVisionDocumentText result) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
2. ดึงข้อความจากบล็อกข้อความที่รู้จัก
ถ้าการดำเนินการจดจำข้อความสำเร็จ จะคืนค่า
FirebaseVisionDocumentText
ต
ออบเจ็กต์ FirebaseVisionDocumentText
มีข้อความแบบเต็มที่รู้จักใน
ภาพและลำดับชั้นของวัตถุที่สะท้อนถึงโครงสร้างของวัตถุที่รู้จัก
เอกสาร:
FirebaseVisionDocumentText.Block
FirebaseVisionDocumentText.Paragraph
FirebaseVisionDocumentText.Word
FirebaseVisionDocumentText.Symbol
สำหรับออบเจ็กต์ Block
, Paragraph
, Word
และ Symbol
แต่ละรายการ คุณจะได้รับแอตทริบิวต์
ที่ระบุอยู่ในภูมิภาคและพิกัดขอบเขตของภูมิภาค
เช่น
Kotlin+KTX
val resultText = result.text for (block in result.blocks) { val blockText = block.text val blockConfidence = block.confidence val blockRecognizedLanguages = block.recognizedLanguages val blockFrame = block.boundingBox for (paragraph in block.paragraphs) { val paragraphText = paragraph.text val paragraphConfidence = paragraph.confidence val paragraphRecognizedLanguages = paragraph.recognizedLanguages val paragraphFrame = paragraph.boundingBox for (word in paragraph.words) { val wordText = word.text val wordConfidence = word.confidence val wordRecognizedLanguages = word.recognizedLanguages val wordFrame = word.boundingBox for (symbol in word.symbols) { val symbolText = symbol.text val symbolConfidence = symbol.confidence val symbolRecognizedLanguages = symbol.recognizedLanguages val symbolFrame = symbol.boundingBox } } } }
Java
String resultText = result.getText(); for (FirebaseVisionDocumentText.Block block: result.getBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) { String paragraphText = paragraph.getText(); Float paragraphConfidence = paragraph.getConfidence(); List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages(); Rect paragraphFrame = paragraph.getBoundingBox(); for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) { String wordText = word.getText(); Float wordConfidence = word.getConfidence(); List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages(); Rect wordFrame = word.getBoundingBox(); for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) { String symbolText = symbol.getText(); Float symbolConfidence = symbol.getConfidence(); List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
ขั้นตอนถัดไป
- ก่อนที่จะทำให้แอปที่ใช้ Cloud API ใช้งานได้จริง คุณควรดำเนินการต่อไปนี้ ขั้นตอนเพิ่มเติมบางส่วนเพื่อป้องกันและบรรเทา ผลกระทบจากการเข้าถึง API ที่ไม่ได้รับอนุญาต