ติดป้ายกำกับรูปภาพด้วย ML Kit บน Android

คุณสามารถใช้ ML Kit เพื่อติดป้ายกำกับวัตถุที่รู้จักในรูปภาพได้โดยใช้ โมเดลในอุปกรณ์หรือโมเดลระบบคลาวด์ โปรดดู ภาพรวมเพื่อเรียนรู้เกี่ยวกับประโยชน์ของ ในแต่ละแนวทาง

ก่อนเริ่มต้น

  1. หากคุณยังไม่ได้ดำเนินการ เพิ่ม Firebase ลงในโปรเจ็กต์ Android
  2. เพิ่มทรัพยากร Dependency สำหรับไลบรารี ML Kit Android ลงในโมดูล ไฟล์ Gradle (ระดับแอป) (ปกติราคา app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1'
    }
  3. ไม่บังคับแต่แนะนำ: หากคุณใช้ API ในอุปกรณ์ ให้กำหนดค่า เพื่อดาวน์โหลดโมเดล ML ลงในอุปกรณ์โดยอัตโนมัติหลังจากที่แอปของคุณ ที่ติดตั้งจาก Play Store

    ในการดำเนินการดังกล่าว ให้เพิ่มการประกาศต่อไปนี้ลงใน AndroidManifest.xml ไฟล์:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="label" />
      <!-- To use multiple models: android:value="label,model2,model3" -->
    </application>
    หากคุณไม่เปิดใช้การดาวน์โหลดโมเดลเวลาติดตั้ง โมเดลจะ ดาวน์โหลดไว้ในครั้งแรกที่คุณเรียกใช้ตัวตรวจจับในอุปกรณ์ คําขอที่คุณสร้าง ก่อนที่การดาวน์โหลดจะเสร็จสมบูรณ์จะไม่เห็นผลลัพธ์
  4. หากต้องการใช้โมเดลในระบบคลาวด์โดยที่คุณยังไม่ได้เปิดใช้ API ในระบบคลาวด์สำหรับโปรเจ็กต์ของคุณ โปรดทำตามขั้นตอนต่อไปนี้

    1. เปิด ML Kit หน้า API ของคอนโซล Firebase
    2. หากคุณยังไม่ได้อัปเกรดโปรเจ็กต์เป็นแพ็กเกจราคา Blaze ให้คลิก โปรดอัปเกรดเพื่อดำเนินการ (คุณจะได้รับแจ้งให้อัปเกรดเฉพาะในกรณีต่อไปนี้ ไม่ได้อยู่ในแพ็กเกจ Blaze)

      เฉพาะโปรเจ็กต์ระดับ Blaze เท่านั้นที่ใช้ API ในระบบคลาวด์ได้

    3. หากยังไม่ได้เปิดใช้ API ในระบบคลาวด์ ให้คลิกเปิดใช้ในระบบคลาวด์ API

    หากต้องการใช้เฉพาะรุ่นในอุปกรณ์ ให้ข้ามขั้นตอนนี้

ตอนนี้คุณก็พร้อมที่จะติดป้ายกำกับรูปภาพโดยใช้โมเดลในอุปกรณ์หรือ โมเดลในระบบคลาวด์

1. เตรียมรูปภาพอินพุต

สร้างออบเจ็กต์ FirebaseVisionImage จากรูปภาพ เครื่องมือติดป้ายกำกับรูปภาพจะทำงานเร็วที่สุดเมื่อคุณใช้ Bitmap หรือหากคุณใช้ Camera2 API media.Imageในรูปแบบ JPEG ซึ่งแนะนําเมื่อ เท่าที่จะเป็นไปได้

  • วิธีสร้างออบเจ็กต์ FirebaseVisionImage จาก media.Image เช่น เมื่อจับภาพจาก กล้องของอุปกรณ์ ส่งวัตถุ media.Image และ การหมุนเวียนเป็น FirebaseVisionImage.fromMediaImage()

    หากคุณใช้แท็ก ไลบรารี CameraX, OnImageCapturedListener และ ImageAnalysis.Analyzer คลาสจะคำนวณค่าการหมุนเวียน คุณเพียงแค่ต้องแปลงการหมุนเป็น ML Kit ค่าคงที่ ROTATION_ ก่อนโทร FirebaseVisionImage.fromMediaImage():

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Kit Vision API
            // ...
        }
    }

    Kotlin+KTX

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Kit Vision API
                // ...
            }
        }
    }

    หากคุณไม่ได้ใช้ไลบรารีกล้องถ่ายรูปที่ให้การหมุนของภาพ คุณ สามารถคำนวณได้จากการหมุนของอุปกรณ์และการวางแนวของกล้อง เซ็นเซอร์ในอุปกรณ์:

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Kotlin+KTX

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    จากนั้นส่งออบเจ็กต์ media.Image และ ค่าการหมุนเวียนเป็น FirebaseVisionImage.fromMediaImage():

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
  • หากต้องการสร้างออบเจ็กต์ FirebaseVisionImage จาก URI ของไฟล์ ให้ส่ง บริบทของแอปและ URI ของไฟล์เพื่อ FirebaseVisionImage.fromFilePath() วิธีนี้มีประโยชน์เมื่อคุณ ใช้ Intent ACTION_GET_CONTENT เพื่อแจ้งให้ผู้ใช้เลือก รูปภาพจากแอปแกลเลอรี

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }

    Kotlin+KTX

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }
  • วิธีสร้างออบเจ็กต์ FirebaseVisionImage จาก ByteBuffer หรืออาร์เรย์ไบต์ ให้คำนวณรูปภาพก่อน การหมุนตามที่อธิบายไว้ข้างต้นสำหรับอินพุต media.Image

    จากนั้นสร้างออบเจ็กต์ FirebaseVisionImageMetadata ที่มีความสูง ความกว้าง รูปแบบการเข้ารหัสสีของรูปภาพ และการหมุน:

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Kotlin+KTX

    val metadata = FirebaseVisionImageMetadata.Builder()
            .setWidth(480) // 480x360 is typically sufficient for
            .setHeight(360) // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build()

    ใช้บัฟเฟอร์หรืออาร์เรย์ และออบเจ็กต์ข้อมูลเมตาเพื่อสร้าง ออบเจ็กต์ FirebaseVisionImage รายการ:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
  • วิธีสร้างออบเจ็กต์ FirebaseVisionImage จาก ออบเจ็กต์ Bitmap รายการ:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromBitmap(bitmap)
    รูปภาพที่แสดงโดยออบเจ็กต์ Bitmap ต้อง ให้ตั้งตรงโดยไม่ต้องมีการหมุนเพิ่มเติม

2. กำหนดค่าและเรียกใช้เครื่องมือติดป้ายกำกับรูปภาพ

หากต้องการติดป้ายกำกับวัตถุในรูปภาพ ให้ส่งออบเจ็กต์ FirebaseVisionImage ไปยัง เมธอด processImage ของ FirebaseVisionImageLabeler

  1. อันดับแรก รับอินสแตนซ์ FirebaseVisionImageLabeler

    หากต้องการใช้ตัวติดป้ายกำกับรูปภาพในอุปกรณ์ ให้ทำดังนี้

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getOnDeviceImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionOnDeviceImageLabelerOptions options =
    //     new FirebaseVisionOnDeviceImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getOnDeviceImageLabeler(options);
    

    Kotlin+KTX

    val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
    

    หากต้องการใช้ตัวติดป้ายกำกับรูปภาพระบบคลาวด์ ให้ทำดังนี้

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

    Kotlin+KTX

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

  2. จากนั้นส่งรูปภาพไปยังเมธอด processImage()

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

    Kotlin+KTX

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

3. รับข้อมูลเกี่ยวกับวัตถุที่ติดป้ายกำกับ

หากการดำเนินการติดป้ายกำกับอิมเมจสำเร็จ รายการ ระบบจะส่งออบเจ็กต์ FirebaseVisionImageLabel รายการไปยัง ผู้ฟังที่ประสบความสำเร็จ ออบเจ็กต์ FirebaseVisionImageLabel แต่ละรายการแสดงถึงบางอย่าง ที่ติดป้ายกำกับไว้ในรูปภาพ คุณจะได้รับข้อความของป้ายกำกับสำหรับแต่ละป้ายกำกับ คำอธิบาย รหัสเอนทิตีของกราฟความรู้ (หากมี) และคะแนนความเชื่อมั่นของการแข่งขัน เช่น

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

Kotlin+KTX

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

เคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์

หากต้องการติดป้ายกำกับรูปภาพในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามดังนี้ เพื่อให้ได้อัตราเฟรมที่ดีที่สุด

  • ควบคุมการเรียกไปยังผู้ติดป้ายกำกับรูปภาพ หากเฟรมวิดีโอใหม่กลายเป็น ว่างในขณะที่เครื่องมือติดป้ายกำกับรูปภาพทำงานอยู่ ให้วางเฟรม
  • ถ้าคุณใช้เอาต์พุตของเครื่องมือติดป้ายกำกับรูปภาพเพื่อวางซ้อนกราฟิก รูปภาพอินพุต รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพ ซ้อนทับในขั้นตอนเดียว การทำเช่นนี้จะช่วยให้แสดงผลบนพื้นผิวจอแสดงผล เพียงครั้งเดียวสำหรับเฟรมอินพุตแต่ละเฟรม
  • หากคุณใช้ Camera2 API ให้จับภาพใน ImageFormat.YUV_420_888

    หากคุณใช้ Camera API รุ่นเก่า ให้จับภาพใน ImageFormat.NV21

ขั้นตอนถัดไป