คุณสามารถใช้ ML Kit เพื่อติดป้ายกำกับวัตถุที่รู้จักในรูปภาพ โดยใช้รุ่นในอุปกรณ์หรือรุ่นระบบคลาวด์ ดู ภาพรวม เพื่อเรียนรู้เกี่ยวกับประโยชน์ของแต่ละแนวทาง
ก่อนจะเริ่ม
- หากคุณยังไม่ได้ เพิ่ม Firebase ในโครงการ Android ของคุณ
- เพิ่มการพึ่งพาสำหรับไลบรารี ML Kit Android ไปยังโมดูลของคุณ (ระดับแอป) ไฟล์ Gradle (โดยปกติคือ
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1' }
- ไม่บังคับ แต่แนะนำ : หากคุณใช้ API บนอุปกรณ์ ให้กำหนดค่าแอปให้ดาวน์โหลดรุ่น ML ไปยังอุปกรณ์โดยอัตโนมัติหลังจากติดตั้งแอปจาก Play Store
โดยเพิ่มการประกาศต่อไปนี้ในไฟล์
AndroidManifest.xml
ของแอป:<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="label" /> <!-- To use multiple models: android:value="label,model2,model3" --> </application>
หากคุณไม่เปิดใช้งานการดาวน์โหลดโมเดลเวลาติดตั้ง โมเดลจะถูกดาวน์โหลดในครั้งแรกที่คุณเรียกใช้ตัวตรวจจับในอุปกรณ์ คำขอที่คุณทำก่อนที่การดาวน์โหลดจะเสร็จสิ้นจะไม่เกิดผลลัพธ์ใดๆ หากคุณต้องการใช้โมเดลบนคลาวด์ และคุณยังไม่ได้เปิดใช้งาน API แบบคลาวด์สำหรับโปรเจ็กต์ของคุณ ให้ทำตอนนี้:
- เปิดหน้า ML Kit APIs ของคอนโซล Firebase
หากคุณยังไม่ได้อัปเกรดโปรเจ็กต์ของคุณเป็นแผนราคา Blaze ให้คลิก อัปเกรด เพื่อดำเนินการดังกล่าว (คุณจะได้รับแจ้งให้อัปเกรดเฉพาะเมื่อโปรเจ็กต์ของคุณไม่อยู่ในแผน Blaze)
เฉพาะโปรเจ็กต์ระดับ Blaze เท่านั้นที่สามารถใช้ API แบบคลาวด์ได้
- หากไม่ได้เปิดใช้งาน API แบบคลาวด์ ให้คลิก เปิดใช้งาน API แบบคลาวด์
หากคุณต้องการใช้เฉพาะรุ่นในอุปกรณ์ ให้ข้ามขั้นตอนนี้
ตอนนี้คุณพร้อมที่จะติดป้ายกำกับรูปภาพโดยใช้รุ่นในอุปกรณ์หรือรุ่นบนคลาวด์แล้ว
1. เตรียมอิมเมจอินพุต
สร้างวัตถุFirebaseVisionImage
จากรูปภาพของคุณ ตัวติดป้ายกำกับรูปภาพทำงานเร็วที่สุดเมื่อคุณใช้ Bitmap
หรือหากคุณใช้ camera2 API สื่อรูปแบบ media.Image
ซึ่งแนะนำเมื่อเป็นไปได้ในการสร้างวัตถุ
FirebaseVisionImage
จากวัตถุmedia.Image
เช่น เมื่อถ่ายภาพจากกล้องของอุปกรณ์ ให้ส่งวัตถุmedia.Image
และการหมุนของรูปภาพไปที่FirebaseVisionImage.fromMediaImage()
หากคุณใช้ไลบรารี CameraX คลาส
OnImageCapturedListener
และImageAnalysis.Analyzer
คำนวณค่าการหมุนให้กับคุณ ดังนั้นคุณเพียงแค่ต้องแปลงการหมุนเป็นหนึ่งในค่าคงที่ROTATION_
ของ ML Kit ก่อนเรียกใช้FirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
หากคุณไม่ได้ใช้ไลบรารีกล้องที่ให้การหมุนของรูปภาพ คุณสามารถคำนวณได้จากการหมุนของอุปกรณ์และการวางแนวของเซ็นเซอร์กล้องในอุปกรณ์:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
จากนั้นส่งวัตถุ
media.Image
และค่าการหมุนไปที่FirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- ในการสร้างวัตถุ
FirebaseVisionImage
จากไฟล์ URI ให้ส่งบริบทของแอปและไฟล์ URI ไปยังFirebaseVisionImage.fromFilePath()
สิ่งนี้มีประโยชน์เมื่อคุณใช้เจตนาACTION_GET_CONTENT
เพื่อแจ้งให้ผู้ใช้เลือกรูปภาพจากแอปแกลเลอรีของตนJava
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- หากต้องการสร้างวัตถุ
FirebaseVisionImage
จากByteBuffer
หรืออาร์เรย์ไบต์ ขั้นแรกให้คำนวณการหมุนภาพตามที่อธิบายไว้ข้างต้นสำหรับอินพุตmedia.Image
จากนั้น สร้างวัตถุ
FirebaseVisionImageMetadata
ที่มีความสูง ความกว้าง รูปแบบการเข้ารหัสสี และการหมุนของรูปภาพ:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
ใช้บัฟเฟอร์หรืออาร์เรย์ และวัตถุข้อมูลเมตาเพื่อสร้างวัตถุ
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- ในการสร้างวัตถุ
FirebaseVisionImage
จากวัตถุBitmap
:รูปภาพที่แสดงโดยวัตถุJava
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
จะต้องตั้งตรง โดยไม่ต้องหมุนเพิ่มเติม
2. กำหนดค่าและเรียกใช้ Image labeler
หากต้องการติดป้ายกำกับวัตถุในรูปภาพ ให้ส่งวัตถุFirebaseVisionImage
ไปยังเมธอด processImage
ของ FirebaseVisionImageLabeler
ขั้นแรก รับอินสแตนซ์ของ
FirebaseVisionImageLabeler
หากคุณต้องการใช้เครื่องติดป้ายกำกับรูปภาพในอุปกรณ์:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getOnDeviceImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionOnDeviceImageLabelerOptions options = // new FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getOnDeviceImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
หากคุณต้องการใช้ตัวติดป้ายกำกับรูปภาพบนคลาวด์:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
จากนั้นส่งภาพไปยัง
processImage()
:Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. รับข้อมูลเกี่ยวกับวัตถุที่มีป้ายกำกับ
หากการดำเนินการติดป้ายกำกับรูปภาพสำเร็จ รายการออบเจ็กต์FirebaseVisionImageLabel
จะถูกส่งต่อไปยังผู้ฟังความสำเร็จ แต่ละอ็อบเจ็กต์ FirebaseVisionImageLabel
แสดงถึงบางสิ่งที่มีป้ายกำกับในภาพ สำหรับแต่ละป้ายชื่อ คุณสามารถรับคำอธิบายข้อความของป้ายชื่อ รหัสเอนทิตีกราฟความรู้ (ถ้ามี) และคะแนนความเชื่อมั่นของการจับคู่ ตัวอย่างเช่น: Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
Kotlin+KTX
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
เคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์
หากคุณต้องการติดป้ายกำกับรูปภาพในแอปพลิเคชันแบบเรียลไทม์ ให้ปฏิบัติตามหลักเกณฑ์เหล่านี้เพื่อให้ได้อัตราเฟรมที่ดีที่สุด:
- คันเร่งเรียกผู้ติดฉลากรูปภาพ หากมีเฟรมวิดีโอใหม่ในขณะที่ใช้ป้ายกำกับรูปภาพ ให้วางเฟรม
- หากคุณกำลังใช้เอาต์พุตของตัวติดป้ายกำกับรูปภาพเพื่อซ้อนทับกราฟิกบนรูปภาพอินพุต ก่อนอื่นให้รับผลลัพธ์จาก ML Kit จากนั้นแสดงรูปภาพและโอเวอร์เลย์ในขั้นตอนเดียว เมื่อทำเช่นนั้น คุณจะแสดงผลไปยังพื้นผิวการแสดงผลเพียงครั้งเดียวสำหรับแต่ละเฟรมอินพุต
หากคุณใช้ Camera2 API ให้จับภาพในรูปแบบ
ImageFormat.YUV_420_888
หากคุณใช้ Camera API รุ่นเก่า ให้จับภาพในรูปแบบ
ImageFormat.NV21
ขั้นตอนถัดไป
- ก่อนที่คุณจะปรับใช้แอปที่ใช้งานจริงซึ่งใช้ Cloud API คุณควรทำตามขั้นตอนเพิ่มเติมเพื่อ ป้องกันและลดผลกระทบจากการเข้าถึง API ที่ไม่ได้รับอนุญาต